Unknown

Dataset Information

0

First-generation genome editing in potato using hairy root transformation.


ABSTRACT: Genome editing and cis-gene breeding have rapidly accelerated crop improvement efforts, but their impacts are limited by the number of species capable of being genetically transformed. Many dicot species, including some vital potato relatives being used to accelerate breeding and genetics efforts, remain recalcitrant to standard Agrobacterium tumefaciens-based transformation. Hairy root transformation using Agrobacterium rhizogenes (A. rhizogenes) provides an accelerated approach to generating transgenic material but has been limited to analysis of hairy root clones. In this study, strains of A. rhizogenes were tested in the wild diploid potato relative Solanum chacoense, which is recalcitrant to infection by Agrobacterium tumefaciens. One strain of A. rhizogenes MSU440 emerged as being capable of delivering a T-DNA carrying the GUS marker and generating transgenic hairy root clones capable of GUS expression and regeneration to whole plants. CRISPR/Cas9 reagents targeting the potato PHYTOENE DESATURASE (StPDS) gene were expressed in hairy root clones and regenerated. We found that 64%-98% of transgenic hairy root clones expressing CRISPR/Cas9 reagents carried targeted mutations, while only 14%-30% of mutations were chimeric. The mutations were maintained in regenerated lines as stable mutations at rates averaging at 38% and were capable of germ-line transmission to progeny. This novel approach broadens the numbers of genotypes amenable to Agrobacterium-mediated transformation while reducing chimerism in primary events and accelerating the generation of edited materials.

SUBMITTER: Butler NM 

PROVIDER: S-EPMC7589382 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

First-generation genome editing in potato using hairy root transformation.

Butler Nathaniel M NM   Jansky Shelley H SH   Jiang Jiming J  

Plant biotechnology journal 20200416 11


Genome editing and cis-gene breeding have rapidly accelerated crop improvement efforts, but their impacts are limited by the number of species capable of being genetically transformed. Many dicot species, including some vital potato relatives being used to accelerate breeding and genetics efforts, remain recalcitrant to standard Agrobacterium tumefaciens-based transformation. Hairy root transformation using Agrobacterium rhizogenes (A. rhizogenes) provides an accelerated approach to generating t  ...[more]

Similar Datasets

| S-EPMC8747350 | biostudies-literature
| S-EPMC10005656 | biostudies-literature
| S-EPMC9832336 | biostudies-literature
| S-EPMC8272327 | biostudies-literature
| S-EPMC5609758 | biostudies-literature
| S-EPMC9647159 | biostudies-literature
| S-EPMC10623320 | biostudies-literature
| S-EPMC7105802 | biostudies-literature
| S-EPMC4540462 | biostudies-literature
| S-EPMC9603872 | biostudies-literature