ABSTRACT: Purpose:Magnetic resonance-guided online adaptive radiation therapy (MRgOART) requires accurate and efficient segmentation. However, the performance of current autosegmentation tools is generally poor for magnetic resonance imaging (MRI) owing to day-to-day variations in image intensity and patient anatomy. In this study, we propose a patient-specific autosegmentation strategy using multiple-input deformable image registration (DIR; PASSMID) to improve segmentation accuracy and efficiency for MRgOART. Methods and materials:Longitudinal MRI scans acquired on a 1.5T MRI-Linac for 10 patients with abdominal cancer were used. The proposed PASSMID includes 2 steps: applying a patient-specific image processing pipeline to longitudinal MRI scans, and populating all contours from previous sessions/fractions to a new fractional MRI using multiple DIRs and combining the resulted contours using simultaneous truth and performance level estimation (STAPLE) to obtain the final consensus segmentation. Five contour propagation strategies were compared: planning computed tomography to fractional MRI scans through rigid body registration (RDR), pretreatment MRI to fractional MRI scans through RDR and DIR, and the proposed multi-input DIR/STAPLE without preprocessing, and the PASSMID. Dice similarity coefficient (DSC) and mean distance to agreement (MDA) with ground truth contours were calculated slice by slice to quantify the contour accuracy. A quantitative index, defined as the ratio of acceptable slices, was introduced using a criterion of DSC > 0.8 and MDA < 2 mm. Results:The proposed PASSMID performed well with an average 2-dimensional DSC/MDA of 0.94/1.78 mm, 0.93/1.04 mm, 0.93/1.06 mm, 0.93/1.14 mm, 0.92/0.83 mm, 0.84/1.53 mm, 0.86/2.39 mm, 0.81/2.49 mm, 0.72/5.48 mm, and 0.70/5.03 mm for the liver, left kidney, right kidney, spleen, aorta, pancreas, stomach, duodenum, small bowel, and colon, respectively. Starting from the third fractions, the contour accuracy was significantly improved with PASSMID compared with the single-DIR strategy (P < .05). The mean ratio of acceptable slices were 13.9%, 17.5%, 60.8%, 70.6%, and 71.8% for the 5 strategies, respectively. Conclusions:The proposed PASSMID solution, by combining image processing, multi-input DIRs, and STAPLE, can significantly improve the accuracy of autosegmentation for intrapatient MRI scans, reducing the time required for further contour editing, thereby facilitating the routine practice of MRgOART.