Unknown

Dataset Information

0

Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework.


ABSTRACT: In the wake of recent advances in machine learning research, the study of pharmacogenomics using predictive algorithms serves as a new paradigmatic application. In this work, our goal was to explore an ensemble machine learning approach which aims to predict probable antidepressant treatment response and remission in major depressive disorder (MDD). To discover the status of antidepressant treatments, we established an ensemble predictive model with a feature selection algorithm resulting from the analysis of genetic variants and clinical variables of 421 patients who were treated with selective serotonin reuptake inhibitors. We also compared our ensemble machine learning framework with other state-of-the-art models including multi-layer feedforward neural networks (MFNNs), logistic regression, support vector machine, C4.5 decision tree, naïve Bayes, and random forests. Our data revealed that the ensemble predictive algorithm with feature selection (using fewer biomarkers) performed comparably to other predictive algorithms (such as MFNNs and logistic regression) to derive the perplexing relationship between biomarkers and the status of antidepressant treatments. Our study demonstrates that the ensemble machine learning framework may present a useful technique to create bioinformatics tools for discriminating non-responders from responders prior to antidepressant treatments.

SUBMITTER: Lin E 

PROVIDER: S-EPMC7599952 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework.

Lin Eugene E   Kuo Po-Hsiu PH   Liu Yu-Li YL   Yu Younger W-Y YW   Yang Albert C AC   Tsai Shih-Jen SJ  

Pharmaceuticals (Basel, Switzerland) 20201013 10


In the wake of recent advances in machine learning research, the study of pharmacogenomics using predictive algorithms serves as a new paradigmatic application. In this work, our goal was to explore an ensemble machine learning approach which aims to predict probable antidepressant treatment response and remission in major depressive disorder (MDD). To discover the status of antidepressant treatments, we established an ensemble predictive model with a feature selection algorithm resulting from t  ...[more]

Similar Datasets

| S-EPMC7839691 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC10150459 | biostudies-literature
| S-EPMC8021919 | biostudies-literature
| S-EPMC6524241 | biostudies-literature
| S-EPMC7463567 | biostudies-literature
| S-EPMC6339954 | biostudies-literature
| S-EPMC8266902 | biostudies-literature
| S-EPMC7969712 | biostudies-literature
| S-EPMC10491759 | biostudies-literature