Unknown

Dataset Information

0

Synthesis of Prostate MR Images for Classification Using Capsule Network-Based GAN Model.


ABSTRACT: Prostate cancer remains a major health concern among elderly men. Deep learning is a state-of-the-art technique for MR image-based prostate cancer diagnosis, but one of major bottlenecks is the severe lack of annotated MR images. The traditional and Generative Adversarial Network (GAN)-based data augmentation methods cannot ensure the quality and the diversity of generated training samples. In this paper, we have proposed a novel GAN model for synthesis of MR images by utilizing its powerful ability in modeling the complex data distributions. The proposed model is designed based on the architecture of deep convolutional GAN. To learn the more equivariant representation of images that is robust to the changes in the pose and spatial relationship of objects in the images, the capsule network is applied to replace CNN used in the discriminator of regular GAN. Meanwhile, the least squares loss has been adopted for both the generator and discriminator in the proposed GAN to address the vanishing gradient problem of sigmoid cross entropy loss function in regular GAN. Extensive experiments are conducted on the simulated and real MR images. The results demonstrate that the proposed capsule network-based GAN model can generate more realistic and higher quality MR images than the compared GANs. The quantitative comparisons show that among all evaluated models, the proposed GAN generally achieves the smallest Kullback-Leibler divergence values for image generation task and provides the best classification performance when it is introduced into the deep learning method for image classification task.

SUBMITTER: Yu H 

PROVIDER: S-EPMC7601698 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis of Prostate MR Images for Classification Using Capsule Network-Based GAN Model.

Yu Houqiang H   Zhang Xuming X  

Sensors (Basel, Switzerland) 20201009 20


Prostate cancer remains a major health concern among elderly men. Deep learning is a state-of-the-art technique for MR image-based prostate cancer diagnosis, but one of major bottlenecks is the severe lack of annotated MR images. The traditional and Generative Adversarial Network (GAN)-based data augmentation methods cannot ensure the quality and the diversity of generated training samples. In this paper, we have proposed a novel GAN model for synthesis of MR images by utilizing its powerful abi  ...[more]

Similar Datasets

| S-EPMC7556330 | biostudies-literature
| S-EPMC8014502 | biostudies-literature
| S-EPMC9558117 | biostudies-literature
| S-EPMC8410868 | biostudies-literature
| S-EPMC7434910 | biostudies-literature
| S-EPMC5540668 | biostudies-literature
| S-EPMC7281812 | biostudies-literature
| S-EPMC8018925 | biostudies-literature
| S-EPMC8528306 | biostudies-literature
| S-EPMC8576552 | biostudies-literature