Ontology highlight
ABSTRACT:
SUBMITTER: Snell KIE
PROVIDER: S-EPMC7604970 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
Snell Kym I E KIE Allotey John J Smuk Melanie M Hooper Richard R Chan Claire C Ahmed Asif A Chappell Lucy C LC Von Dadelszen Peter P Green Marcus M Kenny Louise L Khalil Asma A Khan Khalid S KS Mol Ben W BW Myers Jenny J Poston Lucilla L Thilaganathan Basky B Staff Anne C AC Smith Gordon C S GCS Ganzevoort Wessel W Laivuori Hannele H Odibo Anthony O AO Arenas Ramírez Javier J Kingdom John J Daskalakis George G Farrar Diane D Baschat Ahmet A AA Seed Paul T PT Prefumo Federico F da Silva Costa Fabricio F Groen Henk H Audibert Francois F Masse Jacques J Skråstad Ragnhild B RB Salvesen Kjell Å KÅ Haavaldsen Camilla C Nagata Chie C Rumbold Alice R AR Heinonen Seppo S Askie Lisa M LM Smits Luc J M LJM Vinter Christina A CA Magnus Per P Eero Kajantie K Villa Pia M PM Jenum Anne K AK Andersen Louise B LB Norman Jane E JE Ohkuchi Akihide A Eskild Anne A Bhattacharya Sohinee S McAuliffe Fionnuala M FM Galindo Alberto A Herraiz Ignacio I Carbillon Lionel L Klipstein-Grobusch Kerstin K Yeo Seon Ae SA Browne Joyce L JL Moons Karel G M KGM Riley Richard D RD Thangaratinam Shakila S
BMC medicine 20201102 1
<h4>Background</h4>Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately ...[more]