Project description:ObjectiveFibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored. The aim of this study was to use a novel translational platform based on decellularized human lungs to determine whether the lung ECM of patients with scleroderma controls the development of fibrocytes from peripheral blood mononuclear cells.MethodsWe performed biomechanical evaluation of decellularized scaffolds prepared from lung explants from healthy control subjects and patients with scleroderma, using tensile testing and biochemical and proteomic analysis. Cells obtained from healthy controls and patients with SSc-related ILD were cultured on these scaffolds, and CD45+pro-ColIα1+ cells meeting the criteria for fibrocytes were quantified. The contribution of the neuromolecule netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and by administering bleomycin via inhalation to netrin-1(+/-) mice.ResultsCompared with control lung scaffolds, lung scaffolds from patients with SSc-related ILD showed aberrant anatomy, enhanced stiffness, and abnormal ECM composition. Culture of control cells in lung scaffolds from patients with SSc-related ILD increased production of pro-ColIα1+ cells, which was stimulated by enhanced stiffness and abnormal ECM composition. Cells from patients with SSc-related ILD demonstrated increased pro-ColIα1 responsiveness to lung scaffolds from scleroderma patients but not enhanced stiffness. Enhanced detection of netrin-1-expressing CD14(low) cells in patients with SSc-related ILD was observed, and antibody-mediated netrin-1 neutralization attenuated detection of CD45+pro-ColIα1+ cells in all settings. Netrin-1(+/-) mice were protected against bleomycin-induced lung fibrosis and fibrocyte accumulation.ConclusionFactors present in the lung matrices of patients with scleroderma regulate fibrocyte accumulation via a netrin-1-dependent pathway. Netrin-1 regulates bleomycin-induced pulmonary fibrosis in mice. Netrin-1 might be a novel therapeutic target in SSc-related ILD.
Project description:ObjectiveSecretoglobin (SCGB) 3A2 is a novel lung-enriched cytokine, previously shown to exhibit anti-inflammatory, growth factor, and anti-fibrotic activities. The latter activity was demonstrated using exogenously-administered recombinant SCGB3A2 in the bleomycin (BLM)-induced pulmonary fibrosis model. Whether SCGB3A2 exhibits anti-fibrotic activity in vivo is not known.MethodsMice null for the Scgb3a2 gene were subjected to the BLM-induced pulmonary fibrosis model, and the severity of pulmonary fibrosis determined using histological and biochemical methods.ResultsBLM treatment caused weight loss of both Scgb3a2-null and wild-type mice, however, the loss was far more pronounced in BLM-treated Scgb3a2-null than wild-type mice, and the weight of day 21 of BLM-treated Scgb3a2-null mice was about half of that of BLM-treated wild-type mice. Hematoxylin & Eosin, Masson Trichrome, and Sirius Red staining of lung sections, Ashcroft fibrosis scores, hydroxyproline contents, and the levels of mRNAs encoding various collagens demonstrated that BLM-treated Scgb3a2-null mouse lungs had more severe fibrosis than those of wild-type mouse lungs. Total and differential inflammatory cell numbers in bronchoalveolar lavage fluids, and levels of lung mRNAs including those encoding Th2 cytokines such as IL-4 and profibrotic cytokines such as TGFβ were higher in BLM-treated Scgb3a2-null mouse lungs as compared to those of wild-type mouse lungs. In contrast, mRNAs encoding surfactant proteins A, B, C, and D, and SCGB1A1 did not differ between BLM-treated Scgb3a2-null and wild-type mouse lungs.ConclusionThe role of SCGB3A2 in fibrosis was revisited using Scgb3a2-null mice and littermate controls in the BLM-induced pulmonary fibrosis model. The pulmonary fibrosis in the Scgb3a2-null mice was more severe than the wild-type controls, thus establishing that SCGB3A2 has anti-fibrotic activity in vivo. Importantly, surfactant proteins and SCGB1A1 appear not to be involved in the susceptibility of Scgb3a2-null mice to BLM-induced pulmonary fibrosis.
Project description:Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by chronic, progressive, and fibrotic lung injury. Although remarkable progress has been made toward understanding the pathogenesis of PF, finding more effective treatments for this fatal disease remains a challenge. In this study, we describe an innovative macrophage-based approach to deliver anti-fibrotic protein to the lung and inhibit PF in a mouse model of bleomycin (BLM)-induced lung injury. We engineered macrophages to continuously secrete three types of proteins: interleukin-10, which prevents inflammation; TGFRcFc, a soluble truncated TGF-βR2 that blocks TGF-β; and CD147, which induces matrix metalloproteinases (MMPs) and causes collagen degradation. Infusing these engineered macrophages into the lungs of BLM-induced PF mouse models in an optimal pattern significantly ameliorated PF in mice. Specifically, the most effective therapeutic outcome was achieved by infusing IL-10-secreting macrophages on day 1, followed by TGFRcFc-secreting macrophages on day 7 and CD147-secreting macrophages on day 14 into the same mice after BLM treatment. Our data suggest that macrophage-based delivery of anti-fibrotic proteins to the lungs is a promising therapy for fibrotic lung disorders.
Project description:Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.
Project description:Investigation of whole genome gene expression level changes in Bleomycin induced pulmonary fibrosis mouse model lung tissue, compared to the Sham group.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Project description:The main objective of this study was to investigate the alterations in the gut microbiota (GM) of pulmonary fibrosis (PF) mice induced by bleomycin (BLM) with its underlying mechanisms. BLM was docked with the targets of TGF-β/SMAD and caspase-3 pathways using the molecular docking technique. HE staining and Masson staining were applied to observe the histopathological changes in the pulmonary tissues. Detection of the apoptotic signals was conducted by flow cytometry and TUNEL staining. The mRNA expression of targets involved in the TGF-β/SMAD and caspase-3 signaling pathways in lungs was determined by qPCR. Immunohistochemistry (IHC) assay was used to detect the expression levels of cleaved caspase-3 and BAX proteins in mice lung tissues. 16S rDNA sequencing analysis was used to investigate the changes of GM in the fecal samples of mice in each group. The results showed that the apoptosis rate of pulmonary cells in the BLM group distinctly increased, with the expression levels of crucial target pro-apoptotic gene caspase-3, BAX with the corresponding protein, cleaved caspase-3, BAX were apparently elevated. This was accompanied by a significant increase in pro-fibrotic targets level such as TGF-β, fibronectin, collagen I, and collagen III. The mechanisms of PF induced by BLM were related to apoptosis of lung tissue cells such as alveolar epithelial cells and destroyed alveolar structure and excessive production of extracellular matrix (ECM), which may be bound up with activating TGF-β/SMAD and caspase-3 pathways. As for the GM, it was found that, after BLM induced PF in mice, the micro ecological balance of the GM was destroyed; the distance of PCo1 and Pco2 was significantly elongated, and the relative abundance of some intestinal probiotics like Catenibacterium and Lactobacillus (L. johnsonii and L. gasseri) dramatically lowered while the relative abundance of Verrucomicrobiales and Enterobacteriales substantially increased. Therefore, GM changes associated with PF in mouse models induced by BLM and the concept of "gut-lung axis" might provide an optional therapeutic strategy for PF.
Project description:Two antifibrotic medications (nintedanib and pirfenidone) were recommended (conditionally) for the treatment of patients with idiopathic pulmonary fibrosis (IPF) in the 2015 IPF evidence-based guidelines. These medications have been shown to reduce the rate of decline in forced vital capacity among patients with IPF over time and are the only two disease-modulating pharmacological agents approved by regulatory agencies and available for clinical use worldwide. With the evolved standard of care for interstitial lung disease evaluation including routine use of high-resolution computed tomography, fibrotic lung diseases other than IPF are increasingly recognised. In addition, it is becoming evident that genetic and pathophysiological mechanisms as well as disease behaviour in patients manifesting other "non-IPF progressive fibrotic interstitial lung diseases" (non-IPF-PF) may be similar to those in patients with IPF. Thus, it is biologically plausible that pharmacological agents with antifibrotic properties may be efficacious in non-IPF-PF. Indeed, studies are underway or planned to assess the safety and efficacy of nintedanib or pirfenidone among patients with several non-IPF fibrotic lung diseases. In this review, we briefly summarise the use of pirfenidone and nintedanib in IPF as well as the rationale and potential for use of these medications in non-IPF-PF that are being investigated in ongoing and upcoming clinical trials.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by excessive proliferation of fibroblasts and excessive accumulation of extracellular matrix (ECM). Ferroptosis is a novel form of cell death characterized by the lethal accumulation of iron and lipid peroxidation, which is associated with many diseases. Our study addressed the potential role played by ferroptosis and iron accumulation in the progression of pulmonary fibrosis. We found that the inducers of pulmonary fibrosis and injury, namely, bleomycin (BLM) and lipopolysaccharide (LPS), induced ferroptosis of lung epithelial cells. Both the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) alleviated the symptoms of pulmonary fibrosis induced by bleomycin or LPS. TGF-β stimulation upregulated the expression of transferrin receptor protein 1 (TFRC) in the human lung fibroblast cell line (MRC-5) and mouse primary lung fibroblasts, resulting in increased intracellular Fe2+, which promoted the transformation of fibroblasts into myofibroblasts. Mechanistically, TGF-β enhanced the expression and nuclear localization of the transcriptional coactivator tafazzin (TAZ), which combined with the transcription factor TEA domain protein (TEAD)-4 to promote the transcription of TFRC. In addition, elevated Fe2+ failed to induce the ferroptosis of fibroblasts, which might be related to the regulation of iron export and lipid metabolism. Finally, we specifically knocked out TFRC expression in fibroblasts in mice, and compared with those in the control mice, the symptoms of pulmonary fibrosis were reduced in the knockout mice after bleomycin induction. Collectively, these findings suggest the therapeutic potential of ferroptosis inhibitors and iron chelators in treating pulmonary fibrosis.
Project description:BACKGROUND:Interstitial lung disease (ILD) is a serious complication of connective tissue diseases (CTDs). Although immune dysregulation triggered by genetic and environmental factors is thought to provoke inflammation and subsequent fibrosis, precise mechanisms of these processes remain unclear. Recent reports suggest that activation of aryl hydrocarbon receptor (AhR) signals by various ligands such as tryptophan derivatives can induce hyper-immune responses and are involved in autoimmunity. We investigated the effects of AhR signals on the process of lung fibrosis and changes in immunological features using a bleomycin (BLM)-induced lung fibrosis mouse model. METHODS:BLM was administered intratracheally to C57BL/6JJcl mice and either 5,11-dihydroindolo[3,2-b]carbazole-6-carboxaldehyde (FICZ), a natural AhR ligand, or vehicle was subsequently injected intraperitoneally on day 0, 1, and 2 from BLM administration. Mice were sacrificed at week 3, and lung fibrosis was quantified by the histological changes using the Ashcroft score and deposition of soluble collagen levels in the lung using Sircol assay. The population of immune cells infiltrated into the lungs was analyzed using flow cytometry. RESULTS:Both the Ashcroft score and soluble collagen level in FICZ-treated mice were significantly lower than those in the vehicle group. Moreover, the survival rate of FICZ-treated mice was significantly higher than that of control mice during the 3 weeks after treatment. Interestingly, flow cytometric analysis revealed that the number of CD4+Foxp3+ regulatory T cells (Tregs) was significantly increased and CD4+IFNγ+ and γδ+IL-17A+ T cells were decreased in the lungs of FICZ-treated mice, while the total number of T, B, and NK cells were unaffected by FICZ treatment. CONCLUSIONS:Our findings suggest that stimulation of AhR signals attenuated lung fibrosis by increasing Tregs and suppressing inflammatory T cell subsets in a BLM-induced fibrosis model. AhR signaling pathways may therefore be useful therapeutic targets for connective tissue disease-associated ILD.