Project description:Dermatomyositis (DM), an inflammatory disorder, is often associated with interstitial lung disease (ILD). However, the underlying mechanism remains unclear. Our study performed RNA sequencing (RNA-seq) and integrative bioinformatics analysis of differentially expressed genes (DEGs) in patients with dermatomyositis-associated interstitial lung disease (DM-ILD) and healthy controls. A total of 2,018 DEGs were identified between DM-ILD and healthy blood samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that DEGs were mainly involved in immune- and inflammatory-related biological processes and pathways. Disease ontology (DO) enrichment analysis identified 35 candidate key genes involved in both skin and lung diseases. Meanwhile, a total of 886 differentially expressed alternative splicing (AS) events were found between DM-ILD and healthy blood samples. After overlapping DEGs with differential AS genes, the plasminogen activator and urokinase receptor (PLAUR) involved in immune-related biological processes and complement and coagulation cascades was screened and identified as the most important gene associated with DM-ILD. The protein-protein interaction (PPI) network revealed that PLAUR had interactions with multiple candidate key genes. Moreover, we observed that there were significantly more neutrophils and less naive B cells in DM-ILD samples than in healthy samples. And the expression of PLAUR was significantly positively correlated with the abundance of neutrophils. Significant higher abundance of PLAUR in DM-ILD patients than healthy controls was validated by RT-qPCR. In conclusion, we identified PLAUR as an important player in regulating DM-ILD by neutrophil-associated immune response. These findings enrich our understanding, which may benefit DM-ILD patients.
Project description:Normal cardiac function is maintained through dynamic interactions of cardiac cells with each other and with the extracellular matrix. These interactions are important for remodeling during cardiac growth and pathophysiological conditions. However, the precise mechanisms of these interactions remain unclear. In this study we examined the importance of desmoplakin (DSP) in cardiac cell-cell interactions. Cell-cell communication in the heart requires the formation and preservation of cell contacts by cell adhesion junctions called desmosome-like structures. A major protein component of this complex is DSP, which plays a role in linking the cytoskeletal network to the plasma membrane. Our laboratory previously generated a polyclonal antibody (1611) against the detergent soluble fraction of cardiac fibroblast plasma membrane. In attempting to define which proteins 1611 recognizes, we performed two-dimensional electrophoresis and identified DSP as one of the major proteins recognized by 1611. Immunoprecipitation studies demonstrated that 1611 was able to directly pulldown DSP. We also demonstrate that 1611 and anti-DSP antibodies co-localize in whole heart sections. Finally, using a three-dimensional in vitro cell-cell interaction assay, we demonstrate that 1611 can inhibit cell-cell interactions. These data indicate that DSP is an important protein for cell-cell interactions and affects a variety of cellular functions, including cytokine secretion.
Project description:People worldwide are living longer, and it is estimated that by 2050, the proportion of the world's population over 60 years of age will nearly double. Natural lung aging is associated with molecular and physiological changes that cause alterations in lung function, diminished pulmonary remodeling and regenerative capacity, and increased susceptibility to acute and chronic lung diseases. As the aging population rapidly grows, it is essential to examine how alterations in cellular function and cell-to-cell interactions of pulmonary resident cells and systemic immune cells contribute to a higher risk of increased susceptibility to infection and development of chronic diseases, such as chronic obstructive pulmonary disease and interstitial pulmonary fibrosis. This review provides an overview of physiological, structural, and cellular changes in the aging lung and immune system that facilitate the development and progression of disease.
Project description:Mechanisms by which microtubule plus ends interact with regions of cell-cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP-EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell-cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP-EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.
Project description:AbstractDesmoplakin (DSP), encoded by the DSP gene, is the main desmosome component and is abundant in the myocardial tissue. There are three DSP isoforms that assume the role of supporting structural stability through intercellular adhesion. It has been found that DSP regulates the transcription of adipogenic and fibrogenic genes, and maintains appropriate electrical conductivity by regulating gap junctions and ion channels. DSP is essential for normal myocardial development and the maintenance of its structural functions. Studies have suggested that DSP gene mutations are associated with a variety of hereditary cardiomyopathy, such as arrhythmia cardiomyopathy, dilated cardiomyopathy (DCM), left ventricular noncompaction, and is also closely associated with the Carvajal syndrome, Naxos disease, and erythro-keratodermia-cardiomyopathy syndrome with skin and heart damage. The structure and function of DSP, as well as the clinical manifestations of DSP-related cardiomyopathy were reviewed in this article.
Project description:Irinotecan has been used in the treatment of various malignancies for many years. Still, the knowledge regarding this drug is expanding. The pharmacogenetics of the drug is the crucial component of response to irinotecan. Furthermore, new formulations of the drug are introduced in order to better deliver the drug and avoid potentially life-threatening side effects. Here, we give a comprehensive overview on irinotecan's molecular mode of action, metabolism, pharmacogenetics, and toxicity. Moreover, this article features clinically used combinations of the drug with other anticancer agents and introduces novel formulations of drugs (e.g., liposomal formulations, dendrimers, and nanoparticles). It also outlines crucial mechanisms of tumor cells' resistance to the active metabolite, ethyl-10-hydroxy-camptothecin (SN-38). We are sure that the article will constitute an important source of information for both new researchers in the field of irinotecan chemotherapy and professionals or clinicians who are interested in the topic.
Project description:Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.
Project description:MicroRNAs (miRNAs) represent an important class of small regulatory RNAs that control gene expression posttranscriptionally by targeting mRNAs for degradation or translation inhibition. Early studies have revealed a complex role for miRNAs in major biological processes such as development, differentiation, growth and metabolism. MiR-137 in particular, has been of great interest due to its critical role in brain function and putative involvement in the etiology of both neuropsychiatric disorders and cancer. Several lines of evidence suggest that development, differentiation and maturation of the nervous system is strongly linked to the expression of miR-137 and its regulation of a large number of downstream target genes in various pathways. Dysregulation of this molecule has also been implicated in major mental illnesses through its position in a variant allele highly associated with schizophrenia in the largest mega genome-wide association studies. Interestingly, miR-137 has also been shown to act as a tumor suppressor, with numerous studies finding reduced expression in neoplasia including brain tumor. Restoration of miR-137 expression has also been shown to inhibit cell proliferation, migration and metastasis, and induce cell cycle arrest, differentiation and apoptosis. These properties of miR-137 propose its potential for prognosis, diagnosis and as a therapeutic target for treatment of several human neurological and neoplastic disorders. In this review, we provide details on the discovery, targets, function, regulation and disease involvement of miR-137 with a broad look at recent discovery in this area.
Project description:Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evidence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belonging to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-senescence treatment options with translational potential are currently in development. However, several questions and challenges remain to be addressed before these novel treatment approaches may enter the clinical setting.
Project description:Aging is a universal biological process characterized by a progressive deterioration in functional capacity and an increased risk of morbidity and mortality over time. In the lungs, there are considerable changes in lung structure and function with advancing age; however, research on the transcriptomic profile implicated in this process is scanty. In this study, we addressed the lung transcriptome changes during aging, through a global gene expression analysis of normal lungs of mice aged 4- and 18-months old. Functional pathway enrichment analysis by Ingenuity Pathway Analysis (IPA) revealed that the most enriched signaling pathways in aged mice lungs are involved in the regulation of cell apoptosis, senescence, development, oxidative stress, and inflammation. We also found 25 miRNAs significantly different in the lungs of old mice compared with their younger littermates, eight of them upregulated and 17 downregulated. Using the miRNet database we identified TNFα, mTOR, TGFβ, WNT, FoxO, Apoptosis, Cell cycle, and p53 signaling pathways as the potential targets of several of the dysregulated miRNAs supporting that old lungs have increased susceptibility for apoptosis, inflammation, and fibrosis. These findings reveal differential expression profiles of genes and miRNAs affecting cell survival and the inflammatory response during lung aging.