Project description:The potential for acute shortages of ventilators at the peak of the COVID-19 pandemic has raised the possibility of needing to support two patients from a single ventilator. To provide a system for understanding and prototyping designs, we have developed a mathematical model of two patients supported by a mechanical ventilator. We propose a standard set-up where we simulate the introduction of T-splitters to supply air to two patients and a modified set-up where we introduce a variable resistance in each inhalation pathway and one-way valves in each exhalation pathway. Using the standard set-up, we demonstrate that ventilating two patients with mismatched lung compliances from a single ventilator will lead to clinically significant reductions in tidal volume in the patient with the lowest respiratory compliance. Using the modified set-up, we demonstrate that it could be possible to achieve the same tidal volumes in two patients with mismatched lung compliances, and we show that the tidal volume of one patient can be manipulated independently of the other. The results indicate that, with appropriate modifications, two patients could be supported from a single ventilator with independent control of tidal volumes.
Project description:BACKGROUND:Measurement of work of breathing (WOB) during mechanical ventilation is essential to assess the status and progress of intensive care patients. Increasing ventilator WOB is known as a risk factor for ventilator-induced lung injury (VILI). In addition, the minimization of WOB is crucial to facilitate the weaning process. Several studies have assessed the effects of varying inspiratory flow waveforms on the patient's WOB during assisted ventilation, but there are few studies on the different effect of inspiratory flow waveforms on ventilator WOB during controlled ventilation. METHODS:In this paper, we analyze the ventilator WOB, termed mechanical work (MW) for three common inspiratory flow waveforms both in normal subjects and COPD patients. We use Rohrer's equation for the resistance of the endotracheal tube (ETT) and lung airways. The resistance of pulmonary and chest wall tissue are also considered. Then, the resistive MW required to overcome each component of the respiratory resistance is computed for square and sinusoidal waveforms in volume-controlled ventilation (VCV), and decelerating waveform of flow in pressure-controlled ventilation (PCV). RESULTS:The results indicate that under the constant I:E ratio, a square flow profile best minimizes the MW both in normal subjects and COPD patients. Furthermore, the large I:E ratio may be used to lower MW. The comparison of results shows that ETT and lung airways have the main contribution to resistive MW in normals and COPDs, respectively. CONCLUSION:These findings support that for lowering the MW especially in patients with obstructive lung diseases, flow with square waveforms in VCV, are more favorable than decelerating waveform of flow in PCV. Our analysis suggests the square profile is the best choice from the viewpoint of less MW.
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:Not only arterial hypoxemia but acute lung injury also has become the major concerns of one-lung ventilation (OLV). The use of pressure-controlled ventilation (PCV) for OLV offers the potential advantages of lower airway pressure and intrapulmonary shunt, which result in a reduced risk of barotrauma and improved oxygenation, respectively.We searched Medline, Embase, the Cochrane central register of controlled trials and KoreaMedto find publications comparing the effects of PCV with those of volume-controlled ventilation (VCV) during intraoperative OLV in adults. A meta-analysis of randomized controlled trials was performed using the Cochrane Review Methods.Six studies (259 participants) were included. The PaO2/FiO2 ratio in PCV was higher than in VCV [weighted mean difference (WMD) = 11.04 mmHg, 95 % confidence interval (CI) = 0.30 to 21.77, P = 0.04, I(2) = 3 %] and peak inspiratory pressure was significantly lower in PCV (WMD = -4.91 cm H2O, 95 % CI = -7.30 to -2.53, P < 0.0001, I (2) = 91 %). No differences in PaCO2, tidal volume, heart rate and blood pressure were observed. There were also no differences incompliance, plateau and mean airway pressure.Our meta-analysis provided the evidence of improved oxygenation in PCV. However, it is difficult to draw any definitive conclusions due to the fact that the duration of ventilation in the studies reviewed was insufficient to reveal clinically relevant benefits or disadvantages of PCV. Significantly lower peak inspiratory pressure is the advantage of PCV.