Unknown

Dataset Information

0

Discrimination of wear and non-wear in infants using data from hip- and ankle-worn devices.


ABSTRACT: Introduction: A key component to analyzing wearable sensor data is identifying periods of non-wear. Traditionally, strings of consecutive zero counts (e.g. >60-minutes) are identified indicating periods of non-movement. The non-movement window length is then evaluated as wear or non-wear. Given that non-movement is not equivalent to non-wear, additional criteria should be evaluated to objectively identify periods of non-wear. Identifying non-wear is especially challenging in infants due to their sporadic movement, sleep frequency, and proportion of caregiver-generated movement.

Purpose: To use hip- and ankle-worn ActiGraph wGT3X-BT (wGT3X-BT) data to identify non-wear in infants.

Methods: Fifteen infant participants [mean±SD; age, 8.7±1.7 weeks (range 5.4-11.3 weeks); 5.1±0.8 kg; 56.2±2.1 cm; n = 8 females] wore a wGT3X-BT on the hip and ankle. Criterion data were collected during two, 2-hour directly observed periods in the laboratory. Using raw 30 Hz acceleration data, a vector magnitude and the inclination angle of each individual axis were calculated before being averaged into 1-minute windows. Three decision tree models were developed using data from 1) hip only, 2) ankle only, and 3) hip and ankle combined.

Results: The hip model classified 86.6% of all minutes (wear and non-wear) correctly (F1 = 75.5%) compared to the ankle model which classified 90.6% of all minutes correctly (F1 = 83.0%). The combined site model performed similarly to the ankle model and correctly classified 90.0% of all minutes (F1 = 80.8%).

Conclusion: The similar performance between the ankle only model and the combined site model likely indicates that the features from the ankle device are more important for identifying non-wear in infants. Overall, this approach provides an advancement in the identification of device wear status using wearable sensor data in infants.

SUBMITTER: LaMunion SR 

PROVIDER: S-EPMC7605692 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discrimination of wear and non-wear in infants using data from hip- and ankle-worn devices.

LaMunion Samuel R SR   Crouter Scott E SE   Broskey Nicholas T NT   Altazan Abby D AD   Redman Leanne M LM  

PloS one 20201102 11


<h4>Introduction</h4>A key component to analyzing wearable sensor data is identifying periods of non-wear. Traditionally, strings of consecutive zero counts (e.g. >60-minutes) are identified indicating periods of non-movement. The non-movement window length is then evaluated as wear or non-wear. Given that non-movement is not equivalent to non-wear, additional criteria should be evaluated to objectively identify periods of non-wear. Identifying non-wear is especially challenging in infants due t  ...[more]

Similar Datasets

| S-EPMC8572578 | biostudies-literature
| S-EPMC6678133 | biostudies-literature
| S-EPMC7287584 | biostudies-literature
| S-EPMC6667297 | biostudies-literature
| S-EPMC10747116 | biostudies-literature
| S-EPMC9923693 | biostudies-literature
| S-EPMC6801033 | biostudies-literature
| S-EPMC6150970 | biostudies-literature
| S-EPMC7794504 | biostudies-literature
| S-EPMC5984239 | biostudies-literature