Unknown

Dataset Information

0

Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion.


ABSTRACT: Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.

SUBMITTER: Howard AR 

PROVIDER: S-EPMC7607240 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion.

Howard Angela R AR   Munro James B JB  

Advances in virus research 20190627


Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycopr  ...[more]

Similar Datasets

| S-EPMC3523401 | biostudies-other
| S-EPMC4012985 | biostudies-literature
| S-EPMC5477543 | biostudies-literature
| S-EPMC3510787 | biostudies-literature
| S-EPMC4623893 | biostudies-literature
| S-EPMC5765468 | biostudies-literature
| S-EPMC3726534 | biostudies-literature
| S-EPMC8274448 | biostudies-literature
| S-EPMC5161462 | biostudies-literature
| S-EPMC6897359 | biostudies-literature