Unknown

Dataset Information

0

Reaction of H2 with mitochondria-relevant metabolites using a multifunctional molecular catalyst.


ABSTRACT: The Krebs cycle is the fuel/energy source for cellular activity and therefore of paramount importance for oxygen-based life. The cycle occurs in the mitochondrial matrix, where it produces and transfers electrons to generate energy-rich NADH and FADH2, as well as C4-, C5-, and C6-polycarboxylic acids as energy-poor metabolites. These metabolites are biorenewable resources that represent potential sustainable carbon feedstocks, provided that carbon-hydrogen bonds are restored to these molecules. In the present study, these polycarboxylic acids and other mitochondria-relevant metabolites underwent dehydration (alcohol-to-olefin and/or dehydrative cyclization) and reduction (hydrogenation and hydrogenolysis) to diols or triols upon reaction with H2, catalyzed by sterically confined iridium-bipyridyl complexes. The investigation of these single-metal site catalysts provides valuable molecular insights into the development of molecular technologies for the reduction and dehydration of highly functionalized carbon resources.

SUBMITTER: Yoshioka S 

PROVIDER: S-EPMC7608823 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7011728 | biostudies-literature
| S-EPMC4639900 | biostudies-literature
| S-EPMC6772164 | biostudies-literature
| S-EPMC4730145 | biostudies-literature
| S-EPMC11311133 | biostudies-literature
| S-EPMC5667403 | biostudies-literature
| S-EPMC7167595 | biostudies-literature
| S-EPMC7112759 | biostudies-literature
| PRJEB51255 | ENA
| S-EPMC5490195 | biostudies-literature