Project description:The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).
Project description:The main objective of this research was to determine the existence of relative age effect (RAE) in five European soccer leagues and their second-tier competitions. Even though RAE is a well-known phenomenon in professional sports environments it seems that the effect does not decline over the years. Moreover, additional information is required, especially when taking into account second-tier leagues. Birthdates from 1,332 first-tier domestic players from France, England, Spain, Germany and Italy and birthdates from 1,992 second-tier domestic players for the 2014/2015 season were taken for statistical analysis. In addition to standard statistical tests, the data were analyzed using econometric techniques for count data using Poisson and negative binomial regressions. The results obtained confirmed a biased distribution of birthdates in favor of players born earlier in the calendar year. For all of the five first-tier soccer leagues there was an unequal distribution of birthdates (France ?2 = 40.976, P<0.001; England ?2 = 21.892, P = 0.025; Spain ?2 = 24.690, P = 0.010; Germany ?2 = 22.889, P = 0.018; Italy ?2 = 28.583, P = 0.003). The results for second-tier leagues were similar (France ?2 = 46.741, P<0.001; England ?2 = 27.301, P = 0.004; Spain ?2 = 49.745, P<0.001; Germany ?2 = 30.633, P = 0.001; Italy ?2 = 36.973, P<0.001). Econometric techniques achieved similar results: estimated effect of month of birth, i.e., long-term RAE on players' representativeness, is negative (statistically significant at the 1% level). On average, one month closer to the end of the year reduces the logs of expected counts of players by 6.9%. Assuming this effect as linear, being born in the month immediately before the cut-off date (i.e., December/August), reduces the logs of expected counts of players by approximately 75.9%. Further, ID (index of discrimination, that is, the ratio between the expected counts of players born in the middle of the first and the twelfth month of the selection year) is 2.13 and 2.22 for the first- and second-tier, respectively. In other words, in the top five European first-tier and second-tier leagues, one should expect the number of players born in the first month of the calendar year to be twice the number of those born in the last month. The RAE in the second-tiers is the same as in the first-tiers, so it appears that there is no second chance for later born players. This reduces the chances to recover talented players discarded in youth simply because of lower maturity.
Project description:Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Project description:While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.
Project description:Peptides are increasingly used as inhibitors of various disease specific targets. Several naturally occurring and synthetically developed peptides are undergoing clinical trials. Our work explores the possibility of reusing the non-expressing DNA sequences to predict potential drug-target specific peptides. Recently, we experimentally demonstrated the artificial synthesis of novel proteins from non-coding regions of Escherichia coli genome. In this study, a library of synthetic peptides (Synpeps) was constructed from 2500 intergenic E. coli sequences and screened against Beta-secretase 1 protein, a known drug target for Alzheimer's disease (AD). Secondary and tertiary protein structure predictions followed by protein-protein docking studies were performed to identify the most promising enzyme inhibitors. Interacting residues and favorable binding poses of lead peptide inhibitors were studied. Though initial results are encouraging, experimental validation is required in future to develop efficient target specific inhibitors against AD.
Project description:The Beta-secretase BACE1 is a central drug target for Alzheimer’s disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. To discover potential BAC2 substrates in plasma, mice were treated with a non-specific BACE inhibitor (Cpd89) and a BACE1 preferring inhibitor (LY2811376). Plasma proteomics using DIA showed a reduced abundance of soluble FLT4 (sVEGFR3) for the non-specific inhbtor but not for the BACE1 preferring inhibitor. Conclusively, sVEGFR3 is a potential marker for BACE2 inhibition in plasma.
Project description:BackgroundThe inhibition of the activity of β-secretase (BACE-1) is a potentially important approach for the treatment of Alzheimer disease. To explore the mechanism of inhibition, we describe the use of 46 X-ray crystallographic BACE-1/inhibitor complexes to derive quantitative structure-activity relationship (QSAR) models. The inhibitors were aligned by superimposing 46 X-ray crystallographic BACE-1/inhibitor complexes, and gCOMBINE software was used to perform COMparative BINding Energy (COMBINE) analysis on these 46 minimized BACE-1/inhibitor complexes. The major advantage of the COMBINE analysis is that it can quantitatively extract key residues involved in binding the ligand and identify the nature of the interactions between the ligand and receptor.ResultsBy considering the contributions of the protein residues to the electrostatic and van der Waals intermolecular interaction energies, two predictive and robust COMBINE models were developed: (i) the 3-PC distance-dependent dielectric constant model (built from a single X-ray crystal structure) with a q2 value of 0.74 and an SDEC value of 0.521; and (ii) the 5-PC sigmoidal electrostatic model (built from the actual complexes present in the Brookhaven Protein Data Bank) with a q2 value of 0.79 and an SDEC value of 0.41.ConclusionsThese QSAR models and the information describing the inhibition provide useful insights into the design of novel inhibitors via the optimization of the interactions between ligands and those key residues of BACE-1.
Project description:This article proposes the republication of articles that have previously been published in counterfeit websites of hijacked journals. The paper also discusses the technical and ethical aspects of republishing such articles.
Project description:An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.
Project description:In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem. 2013, 56, 4181-4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf. 2014, DOI: 10.1021/ci400374z].