Ontology highlight
ABSTRACT: Aims
The heterogeneity in Gestational Diabetes Mellitus (GDM) risk factors among different populations impose challenges in developing a generic prediction model. This study evaluates the predictive ability of existing UK NICE guidelines for assessing GDM risk in Singaporean women, and used machine learning to develop a non-invasive predictive model.Methods
Data from 909 pregnancies in Singapore's most deeply phenotyped mother-offspring cohort study, Growing Up in Singapore Towards healthy Outcomes (GUSTO), was used for predictive modeling. We used a CatBoost gradient boosting algorithm, and the Shapley feature attribution framework for model building and interpretation of GDM risk attributes.Results
UK NICE guidelines showed poor predictability in Singaporean women [AUC:0.60 (95% CI 0.51, 0.70)]. The non-invasive predictive model comprising of 4 non-invasive factors: mean arterial blood pressure in first trimester, age, ethnicity and previous history of GDM, greatly outperformed [AUC:0.82 (95% CI 0.71, 0.93)] the UK NICE guidelines.Conclusions
The UK NICE guidelines may be insufficient to assess GDM risk in Asian women. Our non-invasive predictive model outperforms the current state-of-the-art machine learning models to predict GDM, is easily accessible and can be an effective approach to minimize the economic burden of universal testing & GDM associated healthcare in Asian populations.
SUBMITTER: Kumar M
PROVIDER: S-EPMC7612635 | biostudies-literature |
REPOSITORIES: biostudies-literature