Unknown

Dataset Information

0

Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models.


ABSTRACT: The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals.

SUBMITTER: Lehmann BCL 

PROVIDER: S-EPMC7613122 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7252583 | biostudies-literature
| S-EPMC4498414 | biostudies-literature
| S-EPMC3303958 | biostudies-literature
| S-EPMC9478997 | biostudies-literature
| S-EPMC8608783 | biostudies-literature
| S-EPMC10441622 | biostudies-literature
| S-EPMC7924687 | biostudies-literature
| S-EPMC6459320 | biostudies-literature
| S-EPMC8316481 | biostudies-literature
| S-EPMC6096459 | biostudies-literature