MicroRNA-296-5p inhibits cell metastasis and invasion in nasopharyngeal carcinoma by reversing transforming growth factor-?-induced epithelial–mesenchymal transition
Ontology highlight
ABSTRACT: Aim To explore the effect of miR-296-5p on the metastasis of nasopharyngeal carcinoma (NPC) cells and investigate the underlying mechanism. Methods The expressions of miR-296-5p in NPC tissues and cells were determined using GSE32920 database analysis and real-time PCR and miRNA microarray assays. An miR-296-5p mimic and inhibitor were transfected into NPC cells. Then, immunofluorescence imaging, scratch wound-healing, transwell migration and invasion assays were used to observe the effects of miR-296-5p on cell metastasis and invasion. Real-time PCR and western blotting were carried out to detect the expressions of genes and proteins related to epithelial–mesenchymal transition (EMT). A dual luciferase reporter assay was used to identify whether TGF-? is the target gene of miR-296-5p. Finally, TGF-? expression plasmids were transfected into NPC cells to verify the role of TGF-? in the miR-296-5p-mediated inhibition of nasopharyngeal carcinoma cell metastasis. Results Our results show that miR-296-5p inhibits the migratory and invasive capacities of NPC cells by targeting TGF-?, which suppresses EMT. Importantly, the miR-296-5p level was significantly lower in human NPC tissues than in adjacent normal tissues. It also negatively correlated with TGF-? and was significantly associated with the lymph node metastasis of patients with NPC. Conclusions Our findings show that miR-296-5p represses the EMT-related metastasis of NPC by targeting TGF-?. This provides new insight into the role of miR-296-5p in regulating NPC metastasis and invasiveness.
SUBMITTER: Chen M
PROVIDER: S-EPMC7640465 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA