Unknown

Dataset Information

0

Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding.


ABSTRACT:

Aims

The temporal sequence of events underlying functional right ventricular (RV) recovery after improvement of pulmonary hypertension-associated pressure overload is unknown. We sought to establish a novel mouse model of gradual RV recovery from pressure overload and use it to delineate RV reverse-remodelling events.

Methods and results

Surgical pulmonary artery banding (PAB) around a 26-G needle induced RV dysfunction with increased RV pressures, reduced exercise capacity and caused liver congestion, hypertrophic, fibrotic, and vascular myocardial remodelling within 5?weeks of chronic RV pressure overload in mice. Gradual reduction of the afterload burden through PA band absorption (de-PAB)-after RV dysfunction and structural remodelling were established-initiated recovery of RV function (cardiac output and exercise capacity) along with rapid normalization in RV hypertrophy (RV/left ventricular + S and cardiomyocyte area) and RV pressures (right ventricular systolic pressure). RV fibrotic (collagen, elastic fibres, and vimentin+ fibroblasts) and vascular (capillary density) remodelling were equally reversible; however, reversal occurred at a later timepoint after de-PAB, when RV function was already completely restored. Microarray gene expression (ClariomS, Thermo Fisher Scientific, Waltham, MA, USA) along with gene ontology analyses in RV tissues revealed growth factors, immune modulators, and apoptosis mediators as major cellular components underlying functional RV recovery.

Conclusion

We established a novel gradual de-PAB mouse model and used it to demonstrate that established pulmonary hypertension-associated RV dysfunction is fully reversible. Mechanistically, we link functional RV improvement to hypertrophic normalization that precedes fibrotic and vascular reverse-remodelling events.

SUBMITTER: Boehm M 

PROVIDER: S-EPMC7643543 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding.

Boehm Mario M   Tian Xuefei X   Mao Yuqiang Y   Ichimura Kenzo K   Dufva Melanie J MJ   Ali Khadem K   Ali Khadem K   Dannewitz Prosseda Svenja S   Shi Yiwei Y   Kuramoto Kazuya K   Reddy Sushma S   Kheyfets Vitaly O VO   Metzger Ross J RJ   Spiekerkoetter Edda E  

Cardiovascular research 20200801 10


<h4>Aims</h4>The temporal sequence of events underlying functional right ventricular (RV) recovery after improvement of pulmonary hypertension-associated pressure overload is unknown. We sought to establish a novel mouse model of gradual RV recovery from pressure overload and use it to delineate RV reverse-remodelling events.<h4>Methods and results</h4>Surgical pulmonary artery banding (PAB) around a 26-G needle induced RV dysfunction with increased RV pressures, reduced exercise capacity and ca  ...[more]

Similar Datasets

| S-EPMC5296397 | biostudies-literature
2013-06-11 | E-GEOD-47814 | biostudies-arrayexpress
| S-EPMC8041118 | biostudies-literature
2013-06-11 | GSE47814 | GEO
2024-05-09 | GSE232054 | GEO
| S-EPMC5222608 | biostudies-literature
| S-EPMC8391744 | biostudies-literature
| S-EPMC7363583 | biostudies-literature
| S-EPMC9096880 | biostudies-literature
2011-08-24 | GSE31619 | GEO