Genetic and physiological traits for internal phosphorus utilization efficiency in rice.
Ontology highlight
ABSTRACT: Phosphorus (P) is an essential macronutrient for plant growth and development. Phosphorus is usually applied as fertilizer obtained from rock phosphate which is a non-renewable resource. Therefore, developing rice varieties that can use P more efficiently is crucial. Here, we investigated genotypic differences in traits related to internal Phosphorus Utilization Efficiency (PUE) in five rice genotypes grown under P-deficient conditions. P-efficient rice genotypes showed higher total biomass. This was partly due to higher root biomass, which in turn relied on preferential allocation of P to roots in these genotypes. Changes in P content and tissue P concentrations were analyzed in individual leaves at different time points. Genotypes belonging to the high-PUE group responded more quickly to P starvation in terms of reducing leaf P concentrations and they were able to reduce these concentrations to a lower level compared to the low-PUE group. Changes in P concentrations were reflected in gene expression levels for genes involved in lipid remodeling. Sulfolipid (OsSQD2) and galactolipid (OsMGD and OsDGD) synthesis-related genes were generally induced due to P starvation with most pronounced up-regulation in OsDGD1 and OsMGD3, but patterns differed between genotypes. A significantly higher expression of OsDGD5 and OsMGD1 & 2 was detected in the youngest fully expanded leaf of the high-PUE genotype group, whereas expression levels were reversed in older leaves. This pattern would confirm that P efficient genotypes react faster to P starvation in terms of freeing P for redistribution to growing tissues and replacing phospholipids with galactolipids in younger leaves may contribute to this aspect.
SUBMITTER: Adem GD
PROVIDER: S-EPMC7644049 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA