Unknown

Dataset Information

0

Cell cycle dependence of apoptosis photo-triggered using peptide-photosensitizer conjugate.


ABSTRACT: Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical internalization (PCI) method using a peptide/protein-photosensitizer conjugate, which enables immediate cytoplasmic internalization of the bioactive peptides/proteins in a light-dependent manner with low cytotoxicity. To identify the cell-cycle dependent apoptosis, a TatBim peptide-photosensitizer conjugate (TatBim-PS) with apoptotic activity was photo-dependently internalized into HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (Fucci2). Upon irradiation, cytoplasmic TatBim-PS internalization exceeded 95% for all cells classified in the G1, S, and G2/M cell cycle phases with no significant differences between groups. TatBim-PS-mediated apoptosis was more efficiently triggered by photoirradiation in the G1/S transition than in the G1 and S/G2/M phases, suggesting high sensitivity of the former phase to Bim-induced apoptosis. Thus, the cell cycle dependence of Bim peptide-induced apoptosis was successfully investigated using Fucci2 indicator and the PCI method. Since PCI-mediated cytoplasmic internalization of peptides is rapid and does not span multiple cell cycle phases, the Fucci-PCI method constitutes a promising tool for analyzing the cell cycle dependence of peptides/protein functions.

SUBMITTER: Kim H 

PROVIDER: S-EPMC7644668 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cell cycle dependence of apoptosis photo-triggered using peptide-photosensitizer conjugate.

Kim Hyungjin H   Watanabe Sho S   Kitamatsu Mizuki M   Watanabe Kazunori K   Ohtsuki Takashi T  

Scientific reports 20201105 1


Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical internalization (PCI) method using a peptide/protein-photosensitizer conjugate, which enables immediate cytoplasmic internalization of the bioactive peptides/proteins in a light-dependent manner with low  ...[more]

Similar Datasets

| S-EPMC5520197 | biostudies-literature
| S-EPMC9418932 | biostudies-literature
| S-EPMC7465029 | biostudies-literature
| S-EPMC3133417 | biostudies-literature
| S-EPMC7580863 | biostudies-literature
| S-EPMC3946741 | biostudies-literature
| S-EPMC4819321 | biostudies-literature
| S-EPMC5380883 | biostudies-literature
| S-EPMC8298592 | biostudies-literature
| S-EPMC4685267 | biostudies-other