Unknown

Dataset Information

0

Identification of early liver toxicity gene biomarkers using comparative supervised machine learning.


ABSTRACT: Screening agrochemicals and pharmaceuticals for potential liver toxicity is required for regulatory approval and is an expensive and time-consuming process. The identification and utilization of early exposure gene signatures and robust predictive models in regulatory toxicity testing has the potential to reduce time and costs substantially. In this study, comparative supervised machine learning approaches were applied to the rat liver TG-GATEs dataset to develop feature selection and predictive testing. We identified ten gene biomarkers using three different feature selection methods that predicted liver necrosis with high specificity and selectivity in an independent validation dataset from the Microarray Quality Control (MAQC)-II study. Nine of the ten genes that were selected with the supervised methods are involved in metabolism and detoxification (Car3, Crat, Cyp39a1, Dcd, Lbp, Scly, Slc23a1, and Tkfc) and transcriptional regulation (Ablim3). Several of these genes are also implicated in liver carcinogenesis, including Crat, Car3 and Slc23a1. Our biomarker gene signature provides high statistical accuracy and a manageable number of genes to study as indicators to potentially accelerate toxicity testing based on their ability to induce liver necrosis and, eventually, liver cancer.

SUBMITTER: Smith BP 

PROVIDER: S-EPMC7645727 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of early liver toxicity gene biomarkers using comparative supervised machine learning.

Smith Brandi Patrice BP   Auvil Loretta Sue LS   Welge Michael M   Bushell Colleen Bannon CB   Bhargava Rohit R   Elango Navin N   Johnson Kamin K   Madak-Erdogan Zeynep Z  

Scientific reports 20201105 1


Screening agrochemicals and pharmaceuticals for potential liver toxicity is required for regulatory approval and is an expensive and time-consuming process. The identification and utilization of early exposure gene signatures and robust predictive models in regulatory toxicity testing has the potential to reduce time and costs substantially. In this study, comparative supervised machine learning approaches were applied to the rat liver TG-GATEs dataset to develop feature selection and predictive  ...[more]

Similar Datasets

| S-EPMC6019507 | biostudies-other
| S-EPMC8615894 | biostudies-literature
| S-EPMC8371641 | biostudies-literature
| S-EPMC8374469 | biostudies-literature
| S-EPMC8725656 | biostudies-literature
| S-EPMC10012252 | biostudies-literature
2022-02-17 | PXD025594 | Pride
| S-EPMC6325823 | biostudies-other
| S-EPMC7520257 | biostudies-literature
| S-EPMC3503367 | biostudies-literature