Unknown

Dataset Information

0

Heterogeneous network embedding for identifying symptom candidate genes.


ABSTRACT: Objective:Investigating the molecular mechanisms of symptoms is a vital task in precision medicine to refine disease taxonomy and improve the personalized management of chronic diseases. Although there are abundant experimental studies and computational efforts to obtain the candidate genes of diseases, the identification of symptom genes is rarely addressed. We curated a high-quality benchmark dataset of symptom-gene associations and proposed a heterogeneous network embedding for identifying symptom genes. Methods:We proposed a heterogeneous network embedding representation algorithm, which constructed a heterogeneous symptom-related network that integrated symptom-related associations and applied an embedding representation algorithm to obtain the low-dimensional vector representation of nodes. By measuring the relevance between symptoms and genes via calculating the similarities of their vectors, the candidate genes of given symptoms can be obtained. Results:A benchmark dataset of 18 270 symptom-gene associations between 505 symptoms and 4549 genes was curated. We compared our method to baseline algorithms (FSGER and PRINCE). The experimental results indicated our algorithm achieved a significant improvement over the state-of-the-art method, with precision and recall improved by 66.80% (0.844 vs 0.506) and 53.96% (0.311 vs 0.202), respectively, for TOP@3 and association precision improved by 37.71% (0.723 vs 0.525) over the PRINCE. Conclusions:The experimental validation of the algorithms and the literature validation of typical symptoms indicated our method achieved excellent performance. Hence, we curated a prediction dataset of 17 479 symptom-candidate genes. The benchmark and prediction datasets have the potential to promote investigations of the molecular mechanisms of symptoms and provide candidate genes for validation in experimental settings.

SUBMITTER: Yang K 

PROVIDER: S-EPMC7646926 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterogeneous network embedding for identifying symptom candidate genes.

Yang Kuo K   Wang Ning N   Liu Guangming G   Wang Ruyu R   Yu Jian J   Zhang Runshun R   Chen Jianxin J   Zhou Xuezhong X  

Journal of the American Medical Informatics Association : JAMIA 20181101 11


<h4>Objective</h4>Investigating the molecular mechanisms of symptoms is a vital task in precision medicine to refine disease taxonomy and improve the personalized management of chronic diseases. Although there are abundant experimental studies and computational efforts to obtain the candidate genes of diseases, the identification of symptom genes is rarely addressed. We curated a high-quality benchmark dataset of symptom-gene associations and proposed a heterogeneous network embedding for identi  ...[more]

Similar Datasets

| S-EPMC9326849 | biostudies-literature
| S-EPMC6927100 | biostudies-literature
| S-EPMC8098024 | biostudies-literature
| S-EPMC4857740 | biostudies-literature
2009-12-10 | GSE19263 | GEO
| S-EPMC8223753 | biostudies-literature
2009-12-09 | E-GEOD-19263 | biostudies-arrayexpress
| S-EPMC4620916 | biostudies-literature
| S-EPMC523448 | biostudies-literature
| S-EPMC8465678 | biostudies-literature