Ontology highlight
ABSTRACT: Objective
Unsupervised machine learning approaches hold promise for large-scale clinical data. However, the heterogeneity of clinical data raises new methodological challenges in feature selection, choosing a distance metric that captures biological meaning, and visualization. We hypothesized that clustering could discover prognostic groups from patients with chronic lymphocytic leukemia, a disease that provides biological validation through well-understood outcomes.Methods
To address this challenge, we applied k-medoids clustering with 10 distance metrics to 2 experiments ("A" and "B") with mixed clinical features collapsed to binary vectors and visualized with both multidimensional scaling and t-stochastic neighbor embedding. To assess prognostic utility, we performed survival analysis using a Cox proportional hazard model, log-rank test, and Kaplan-Meier curves.Results
In both experiments, survival analysis revealed a statistically significant association between clusters and survival outcomes (A: overall survival, P = .0164; B: time from diagnosis to treatment, P = .0039). Multidimensional scaling separated clusters along a gradient mirroring the order of overall survival. Longer survival was associated with mutated immunoglobulin heavy-chain variable region gene (IGHV) status, absent Zap 70 expression, female sex, and younger age.Conclusions
This approach to mixed-type data handling and selection of distance metric captured well-understood, binary, prognostic markers in chronic lymphocytic leukemia (sex, IGHV mutation status, ZAP70 expression status) with high fidelity.
SUBMITTER: Coombes CE
PROVIDER: S-EPMC7647286 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
Coombes Caitlin E CE Abrams Zachary B ZB Li Suli S Abruzzo Lynne V LV Coombes Kevin R KR
Journal of the American Medical Informatics Association : JAMIA 20200701 7
<h4>Objective</h4>Unsupervised machine learning approaches hold promise for large-scale clinical data. However, the heterogeneity of clinical data raises new methodological challenges in feature selection, choosing a distance metric that captures biological meaning, and visualization. We hypothesized that clustering could discover prognostic groups from patients with chronic lymphocytic leukemia, a disease that provides biological validation through well-understood outcomes.<h4>Methods</h4>To ad ...[more]