Unknown

Dataset Information

0

Fold-stratified cross-validation for unbiased and privacy-preserving federated learning.


ABSTRACT:

Objective

We introduce fold-stratified cross-validation, a validation methodology that is compatible with privacy-preserving federated learning and that prevents data leakage caused by duplicates of electronic health records (EHRs).

Materials and methods

Fold-stratified cross-validation complements cross-validation with an initial stratification of EHRs in folds containing patients with similar characteristics, thus ensuring that duplicates of a record are jointly present either in training or in validation folds. Monte Carlo simulations are performed to investigate the properties of fold-stratified cross-validation in the case of a model data analysis using both synthetic data and MIMIC-III (Medical Information Mart for Intensive Care-III) medical records.

Results

In situations in which duplicated EHRs could induce overoptimistic estimations of accuracy, applying fold-stratified cross-validation prevented this bias, while not requiring full deduplication. However, a pessimistic bias might appear if the covariate used for the stratification was strongly associated with the outcome.

Discussion

Although fold-stratified cross-validation presents low computational overhead, to be efficient it requires the preliminary identification of a covariate that is both shared by duplicated records and weakly associated with the outcome. When available, the hash of a personal identifier or a patient's date of birth provides such a covariate. On the contrary, pseudonymization interferes with fold-stratified cross-validation, as it may break the equality of the stratifying covariate among duplicates.

Conclusion

Fold-stratified cross-validation is an easy-to-implement methodology that prevents data leakage when a model is trained on distributed EHRs that contain duplicates, while preserving privacy.

SUBMITTER: Bey R 

PROVIDER: S-EPMC7647321 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC11376435 | biostudies-literature
| S-EPMC8650276 | biostudies-literature
| S-EPMC9122966 | biostudies-literature
| S-EPMC8007806 | biostudies-literature
| S-EPMC5924379 | biostudies-literature
| S-EPMC11373406 | biostudies-literature
| S-EPMC10697957 | biostudies-literature
| S-EPMC10612407 | biostudies-literature
| S-EPMC8423792 | biostudies-literature
| S-EPMC10774276 | biostudies-literature