Project description:Multifocal (MF)/multicentric (MC) breast cancer is generally considered to be where two or more breast tumours are present within the same breast, and is seen in ~10% of breast cancer cases. This study investigates the prevalence of multifocality/multicentricity in a cohort of BRCA1/2 mutation carriers with breast cancer from Northern Ireland via cross-sectional analysis. Data from 211 women with BRCA1/2 mutations (BRCA1-91, BRCA2-120) and breast cancer were collected including age, tumour focality, size, type, grade and receptor profile. The prevalence of multifocality/multicentricity within this group was 25% but, within subgroups, prevalence amongst BRCA2 carriers was more than double that of BRCA1 carriers (p =?0.001). Women affected by MF/MC tumours had proportionately higher oestrogen receptor positivity (p =?0.001) and lower triple negativity (p =?0.004). These observations are likely to be driven by the higher BRCA2 mutation prevalence observed within this cohort. The odds of a BRCA2 carrier developing MF/MC cancer were almost four-fold higher than a BRCA1 carrier (odds ratio: 3.71, CI: 1.77-7.78, p =?0.001). These findings were subsequently validated in a second, large independent cohort of patients with BRCA-associated breast cancers from a UK-wide multicentre study. This confirmed a significantly higher prevalence of MF/MC tumours amongst BRCA2 mutation carriers compared with BRCA1 mutation carriers. This has important implications for clinicians involved in the treatment of BRCA2-associated breast cancer, both in the diagnostic process, in ensuring that tumour focality is adequately assessed to facilitate treatment decision-making, and for breast surgeons, particularly if breast conserving surgery is being considered as a treatment option for these patients.
Project description:Children (n = 747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of first grade), addition retrieval (end of second grade), and calculations and word reading (end of third grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly contributed to both outcomes, via retrieval. However, there was no overlap in domain-general direct effects on calculations (attentive behavior, reasoning, working memory) versus word reading (language, phonological memory, RAN). Results suggest ease of forming associative relations and abilities engaged during the formation of these long-term memories are common to both outcomes and can be indexed by addition-fact retrieval, but further growth in calculations and word reading is driven by different constellations of domain-general abilities.
Project description:BackgroundBRCA2 mutation has a more substantial impact on the homologous recombination and superior therapeutic response to platinum-based chemotherapy than BRCA1 mutation. Whether BRCA2-mutated patients could benefit more from PARPi than BRCA1-mutated patients remains unclear. We performed a meta-analysis to assess the efficacy difference of PARPi between BRCA1 mutation carriers and BRCA2 mutation carriers.MethodsPubmed, Embase, and Cochrane Library were comprehensively searched for randomized controlled trials (RCTs) of PARPi that had available hazard ratios (HRs) of progression-free survival (PFS) in both BRCA1-mutated population and BRCA2-mutated population. We calculated the pooled PFS HRs and 95%CI using randomized-effect models, and the difference between the two estimates was compared by interaction test.ResultsA total of 11 eligible RCTs of high quality were identified through search. Overall, 1544 BRCA1 mutation carriers and 1191 BRCA2 mutation carriers were included in the final analysis. The pooled PFS HR was 0.42 (95% CI: 0.35-0.50) in BRCA1-mutated patients who were treated with PARPi compared with patients in the control group. In BRCA2-mutated patients treated with PARPi, the pooled PFS HR compared with the control groups was 0.35 (95% CI: 0.24-0.51). The difference in efficacy of PARPi was not significant between the two subgroups (P heterogeneity = 0.40, for interaction).ConclusionBRCA1-mutated patients and BRCA2-mutated patients could benefit from PARPi, and the efficacy is comparable. Currently, there is no evidence that BRCA2-mutated patients would benefit more from PARPi than BRCA1-mutated patients.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020214582.
Project description:The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Project description:IntroductionBRCA1 and BRCA2 (BRCA1/2) mutation breast cancers constitute an uncommon, but unique group of breast cancers that present at a younger age, and are underscored by genomic instability and accumulation of DNA damage. Talazoparib is a potent poly(ADP-ribose) polymerase (PARP) inhibitor that exploits impaired DNA damage response mechanisms in this population of patients and results in significant efficacy. Based on the results of the EMBRACA trial, talazoparib was approved for the treatment of patients with advanced germline BRCA1/2 mutant breast cancer.Areas coveredIn this review, the authors highlight the relevant clinical trials of talazoparib, as well as, safety, tolerability, and quality of life considerations. They also examine putative response and resistance mechanisms, and rational combinatorial therapeutic strategies under development.Expert opinionTalazoparib has been a major advance in the treatment of germline BRCA1/2 mutation breast cancer with both clinical efficacy and improvement in quality of life compared to standard cytotoxic chemotherapy. To date, the optimal sequencing of talazoparib administration in the metastatic setting has not yet been established. A deeper understanding of response and resistance mechanisms, and more broadly, the DNA repair pathway, will lead to additional opportunities in targeting this pathway and open up therapeutic indications to a broader patient population.
Project description:Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.
Project description:PurposeAlterations in DNA damage repair (DDR) pathway genes occur in 20%-25% of men with metastatic castration-resistant prostate cancer (mCRPC). Although PARP inhibitors (PARPis) have been shown to benefit men with mCRPC harboring DDR defects due to mutations in BRCA1/2 and ATM, additional treatments are necessary because the effects are not durable.Experimental designWe performed transcriptomic analysis of publicly available mCRPC cases, comparing BRCA2 null with BRCA2 wild-type. We generated BRCA2-null prostate cancer cells using CRISPR/Cas9 and treated these cells with PARPis and SRC inhibitors. We also assessed the antiproliferative effects of combination treatment in 3D prostate cancer organoids.ResultsWe observed significant enrichment of the SRC signaling pathway in BRCA2-altered mCRPC. BRCA2-null prostate cancer cell lines had increased SRC phosphorylation and higher sensitivity to SRC inhibitors (e.g., dasatinib, bosutinib, and saracatinib) relative to wild-type cells. Combination treatment with PARPis and SRC inhibitors was antiproliferative and had a synergistic effect in BRCA2-null prostate cancer cells, mCRPC organoids, and Trp53/Rb1-null prostate cancer cells. Inhibition of SRC signaling by dasatinib augmented DNA damage in BRCA2-null prostate cancer cells. Moreover, SRC knockdown increased PARPi sensitivity in BRCA2-null prostate cancer cells.ConclusionsThis work suggests that SRC activation may be a potential mechanism of PARPi resistance and that treatment with SRC inhibitors may overcome this resistance. Our preclinical study demonstrates that combining PARPis and SRC inhibitors may be a promising therapeutic strategy for patients with BRCA2-null mCRPC.
Project description:The breast cancer 1 and 2, early onset (BRCA1 and BRCA2) genes are important for double-strand break repair by homologous recombination. Cells with inactivating mutations of the BRCA1 or BRCA2 tumor suppressor genes show increased sensitivity to Poly-ADP ribose polymerase (PARP)-inhibitors in vitro. Sporadic breast tumors with BRCA1 promoter hypermethylation show a similar phenotype to familial BRCA1 patient tumors termed "BRCAness." Sporadic ovarian tumors with functional inactivation of BRCA1 by hypermethylation will also have the BRCA-deficiency phenocopy. The loss of BRCA1 expression associated with promoter hypermethylation will disrupt BRCA-associated DNA repair and may sensitize tumors to BRCA-directed therapies. Thus, the determination of methylation status of BRCA1 may be an important predictive classifier of response to PARP-inhibitor therapy. The methylation, and thereby functional, status of other genes implicated in the wider BRCA/homologous recombination (HR) pathway may also be relevant to the prediction of response to PARP-inhibitor therapy. Here, we describe the four optimal technologies for assaying the promoter methylation status of BRCA1 and/or other genes.
Project description:BackgroundThe poly ADP ribose polymerase (PARP) inhibitor olaparib has been approved for treating prostate cancer (PCa) with BRCA mutations, and veliparib, another PARP inhibitor, is being tested in clinical trials. However, veliparib only showed a moderate anticancer effect, and combination therapy is required for PCa patients. Histone deacetylase (HDAC) inhibitors have been tested to improve the anticancer efficacy of PARP inhibitors for PCa cells, but the exact mechanisms are still elusive.MethodsSeveral types of PCa cells and prostate epithelial cell line RWPE-1 were treated with veliparib or SAHA alone or in combination. Cell viability or clonogenicity was tested with violet crystal assay; cell apoptosis was detected with Annexin V-FITC/PI staining and flow cytometry, and the cleaved PARP was tested with western blot; DNA damage was evaluated by staining the cells with γH2AX antibody, and the DNA damage foci were observed with a fluorescent microscopy, and the level of γH2AX was tested with western blot; the protein levels of UHRF1 and BRCA1 were measured with western blot or cell immunofluorescent staining, and the interaction of UHRF1 and BRCA1 proteins was detected with co-immunoprecipitation when cells were treated with drugs. The antitumor effect of combinational therapy was validated in DU145 xenograft models.ResultsPCa cells showed different sensitivity to veliparib or SAHA. Co-administration of both drugs synergistically decreased cell viability and clonogenicity, and synergistically induced cell apoptosis and DNA damage, while had no detectable toxicity to normal prostate epithelial cells. Mechanistically, veliparib or SAHA alone reduced BRCA1 or UHRF1 protein levels, co-treatment with veliparib and SAHA synergistically reduced BRCA1 protein levels by targeting the UHRF1/BRCA1 protein complex, the depletion of UHRF1 resulted in the degradation of BRCA1 protein, while the elevation of UHRF1 impaired co-treatment-reduced BRCA1 protein levels. Co-administration of both drugs synergistically decreased the growth of xenografts.ConclusionsOur studies revealed that the synergistic lethality of HDAC and PARP inhibitors resulted from promoting DNA damage and inhibiting HR DNA damage repair pathways, in particular targeting the UHRF1/BRCA1 protein complex. The synergistic lethality of veliparib and SAHA shows great potential for future PCa clinical trials.
Project description:Polyadenosine-diphosphate-ribose polymerase (PARP) inhibitors cause deoxyribonucleic acid (DNA) damage that can be lethal to cells with deficient repair mechanisms. A number of PARP inhibitors are being tested as treatments for men with prostate cancer, both as monotherapies and in combinations that are based on purported synergies in treatment effect. While the initial single-agent development focused on men with identified deficiencies in DNA-repair pathways, broader patient populations are being considered for combination approaches. This review summarizes the current clinical development of PARP inhibitors and explores the rationale for novel combination strategies.