Unknown

Dataset Information

0

The Relationship Between Cognition and Sensorimotor Behavior in an F1 Driving Simulation: An Explorative Study.


ABSTRACT: Sensorimotor control simultaneously engages multiple cognitive processes, like decision making, intention, processing, and the integration of multisensory signals. The reciprocal relationship of cognition and sensorimotor learning is well documented. However, little is known if the status of cognitive skills relates to immediate sensorimotor performance of performing a novel skill. Thus, we aim to explore whether cognitive skills in general and executive functions (EFs) in particular may relate to novel sensorimotor performance and adaptive skills. Therefore, 23 male participants engaged in a novel driving simulation for 2 days. On the first day, they accustomed to the F1 simulation until meeting a preset threshold (adaption). On the second day, they aimed to drive as fast as possible (performance). In addition, we measured EFs and global cognition. We found meaningful relationships between response inhibition (Stroop Color and Word Test), the driving performance (r = 0.48, p = 0.013), and the adaptive ability (r = 0.34, p = 0.012). All other tests of executive functioning and global cognition remained non-significant. Our results illustrate an association of driving performance and adaptive abilities and the EF selective attention/inhibition in a novel F1 simulation. Given the novelty of the task, the ability to adjust sensorimotor behavior to keep the car on the track seems to be the primary necessary skill to navigate the lap and achieve fast times.

SUBMITTER: Eckardt N 

PROVIDER: S-EPMC7656063 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Relationship Between Cognition and Sensorimotor Behavior in an F1 Driving Simulation: An Explorative Study.

Eckardt Nils N   Roden Ingo I   Grube Dietmar D   Schorer Jörg J  

Frontiers in psychology 20201028


Sensorimotor control simultaneously engages multiple cognitive processes, like decision making, intention, processing, and the integration of multisensory signals. The reciprocal relationship of cognition and sensorimotor learning is well documented. However, little is known if the status of cognitive skills relates to immediate sensorimotor performance of performing a novel skill. Thus, we aim to explore whether cognitive skills in general and executive functions (EFs) in particular may relate  ...[more]

Similar Datasets

| S-EPMC10360962 | biostudies-literature
| S-EPMC6884475 | biostudies-literature
| S-EPMC5764283 | biostudies-literature
| S-EPMC8996024 | biostudies-literature
| S-EPMC6659373 | biostudies-literature
| S-EPMC7016209 | biostudies-literature
| S-EPMC2680801 | biostudies-literature
| S-EPMC5415047 | biostudies-literature
| S-EPMC10766244 | biostudies-literature
| S-EPMC7518634 | biostudies-literature