Unknown

Dataset Information

0

An in vitro Forster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9.


ABSTRACT: SUMOylation is one of the posttranslational modifications that mediate cellular activities such as transcription, DNA repair, and signal transduction and is involved in the cell cycle. However, only a limited number of small molecule inhibitors have been identified to study its role in cellular processes. Here, we report a Förster resonance energy transfer (FRET) high-throughput screening assay based on the interaction between E2 Ubc9 and E3 PIAS1. Of the 3200 compounds screened, 34 (1.1%) showed higher than 50% inhibition and 4 displayed dose-response inhibitory effects. By combining this method with a label-free surface plasmon resonance (SPR) assay, false positives were excluded leading to discovering WNN0605-F008 and WNN1062-D002 that bound to Ubc9 with KD values of 1.93 ± 0.62 and 5.24 ± 3.73 μM, respectively. We examined the effect of the two compounds on SUMO2-mediated SUMOylation of RanGAP1, only WNN0605-F008 significantly inhibited RanGAP1 SUMOylation, whereas WNN1062-D002 did not show any inhibition. These compounds, with novel chemical scaffolds, may serve as the initial material for developing new SUMOylation inhibitors.

SUBMITTER: Wang YZ 

PROVIDER: S-EPMC7656853 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4591182 | biostudies-literature
| S-EPMC3632402 | biostudies-literature
| S-EPMC6441672 | biostudies-literature
| S-EPMC8023573 | biostudies-literature
| S-EPMC4440390 | biostudies-literature
| S-EPMC2600711 | biostudies-literature
| S-EPMC7316412 | biostudies-literature
| S-EPMC3253952 | biostudies-literature
| S-EPMC4928127 | biostudies-literature
| S-EPMC5017424 | biostudies-literature