Identifying M1 Macrophage-Related Genes Through a Co-expression Network to Construct a Four-Gene Risk-Scoring Model for Predicting Thyroid Cancer Prognosis.
Ontology highlight
ABSTRACT: Macrophages are key innate immune cells in the tumor microenvironment that regulate primary tumor growth, vascularization, metastatic spread and response to therapies. Macrophages can polarize into two different states (M1 and M2) with distinct phenotypes and functions. To investigate the known tumoricidal effects of M1 macrophages, we obtained RNA expression profiles and clinical data from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA). The proportions of immune cells in tumor samples were assessed using CIBERSORT, and weighted gene co-expression network analysis (WGCNA) was used to identify M1 macrophage-related modules. Univariate Cox analysis and LASSO-Cox regression analysis were performed, and four genes (SPP1, DHRS3, SLC11A1, and CFB) with significant differential expression were selected through GEPIA. These four genes can be considered hub genes. The four-gene risk-scoring model may be an independent prognostic factor for THCA patients. The validation cohort and the entire cohort confirmed the results. Univariate and multivariate Cox analysis was performed to identify independent prognostic factors for THCA. Finally, a prognostic nomogram was built based on the entire cohort, and the nomogram combining the risk score and clinical prognostic factors was superior to the nomogram with individual clinical prognostic factors in predicting overall survival. Time-dependent ROC curves and DCA confirmed that the combined nomogram is useful. Gene set enrichment analysis (GSEA) was used to elucidate the potential molecular functions of the high-risk group. Our study identified four genes associated with M1 macrophages and established a prognostic nomogram that predicts overall survival for patients with THCA, which may help determine clinical treatment options for different patients.
SUBMITTER: Zhuang G
PROVIDER: S-EPMC7658400 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA