Unknown

Dataset Information

0

An Evaluation of BfmR-Regulated Antimicrobial Resistance in the Extensively Drug Resistant (XDR) Acinetobacter baumannii Strain HUMC1.


ABSTRACT: Acinetobacter baumannii is a problematic pathogen due to its common expression of extensive drug resistance (XDR) and ability to survive in the healthcare environment. These characteristics are mediated, in part, by the signal transduction system BfmR/BfmS. We previously demonstrated, in antimicrobial sensitive clinical isolates, that BfmR conferred increased resistance to meropenem and polymyxin E. In this study, potential mechanisms were informed, in part, by a prior transcriptome analysis of the antimicrobial sensitive isolate AB307-0294, which identified the porins OprB and aquaporin (Omp33-36, MapA) as plausible mediators for resistance to hydrophilic antimicrobials such as meropenem. Studies were then performed in the XDR isolate HUMC1, since delineating resistance mechanisms in this genomic background would be more translationally relevant. In HUMC1 BfmR likewise increased meropenem and polymyxin E resistance and upregulated gene expression of OprB and aquaporin. However, the comparison of HUMC1 with isogenic mutant constructs demonstrated that neither OprB nor aquaporin affected meropenem resistance; polymyxin E susceptibility was also unaffected. Next, we determined whether BfmR-mediated biofilm production affected either meropenem or polymyxin E susceptibilities. Interestingly, biofilm formation increased resistance to polymyxin E, but had little, if any effect on meropenem activity. Additionally, BfmR mediated meropenem resistance, and perhaps polymyxin E resistance, was due to BfmR regulated factors that do not affect biofilm formation. These findings increase our understanding of the mechanisms by which BfmR mediates intrinsic antimicrobial resistance in a clinically relevant XDR isolate and suggest that the efficacy of different classes of antimicrobials may vary under biofilm inducing conditions.

SUBMITTER: Marr CM 

PROVIDER: S-EPMC7658413 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Evaluation of BfmR-Regulated Antimicrobial Resistance in the Extensively Drug Resistant (XDR) <i>Acinetobacter baumannii</i> Strain HUMC1.

Marr Candace M CM   MacDonald Ulrike U   Trivedi Grishma G   Chakravorty Somnath S   Russo Thomas A TA  

Frontiers in microbiology 20201029


<i>Acinetobacter baumannii</i> is a problematic pathogen due to its common expression of extensive drug resistance (XDR) and ability to survive in the healthcare environment. These characteristics are mediated, in part, by the signal transduction system BfmR/BfmS. We previously demonstrated, in antimicrobial sensitive clinical isolates, that BfmR conferred increased resistance to meropenem and polymyxin E. In this study, potential mechanisms were informed, in part, by a prior transcriptome analy  ...[more]

Similar Datasets

| S-EPMC7449414 | biostudies-literature
| S-EPMC4241659 | biostudies-literature
| S-EPMC3889758 | biostudies-literature
| S-EPMC6198730 | biostudies-literature
| S-EPMC6635527 | biostudies-literature
| S-EPMC7530931 | biostudies-literature
| S-EPMC7483275 | biostudies-literature
| S-EPMC6968657 | biostudies-literature
| S-EPMC6240043 | biostudies-literature
| S-EPMC4888885 | biostudies-literature