Unknown

Dataset Information

0

Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm.


ABSTRACT: Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I-II) from high-grade (Fuhrman III-IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets with an 8:2 split for model development and internal validation. Another 43 lesions from a separate institution were set aside for independent external validation. The performance of TPOT (Tree-Based Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 0.59 (95% CI 0.49-0.68), accuracy of 0.77 (95% CI 0.68-0.84), sensitivity of 0.38 (95% CI 0.29-0.48), and specificity of 0.86 (95% CI 0.78-0.92). The best-performing TPOT pipeline achieved an external validation ROC AUC of 0.60 (95% CI 0.50-0.69), accuracy of 0.81 (95% CI 0.72-0.88), sensitivity of 0.12 (95% CI 0.14-0.30), and specificity of 0.97 (95% CI 0.87-0.97). Automated machine learning pipelines can perform equivalent to or better than hand-optimized pipeline on an external validation test non-invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI.

SUBMITTER: Purkayastha S 

PROVIDER: S-EPMC7658976 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm.

Purkayastha Subhanik S   Zhao Yijun Y   Wu Jing J   Hu Rong R   McGirr Aidan A   Singh Sukhdeep S   Chang Ken K   Huang Raymond Y RY   Zhang Paul J PJ   Silva Alvin A   Soulen Michael C MC   Stavropoulos S William SW   Zhang Zishu Z   Bai Harrison X HX  

Scientific reports 20201111 1


Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-making. We aimed to differentiate low-grade (Fuhrman I-II) from high-grade (Fuhrman III-IV) renal cell carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 lesions with information on Fuhrman grade from 4 institutions were divided into training and test  ...[more]

Similar Datasets

| S-EPMC9297892 | biostudies-literature
| S-EPMC10479567 | biostudies-literature
| S-EPMC8554871 | biostudies-literature
| S-EPMC10797132 | biostudies-literature
| S-EPMC7808597 | biostudies-literature
| S-EPMC4446187 | biostudies-other
| S-EPMC4629045 | biostudies-literature
| S-EPMC9282248 | biostudies-literature
| S-EPMC6715562 | biostudies-other
| S-EPMC7693522 | biostudies-literature