Unknown

Dataset Information

0

Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility.


ABSTRACT: Covid-19 (SARS CoV-2) has become a deadly, world-wide pandemic. Although most who are infected survive, complications from the virus can be pronounced and long-lasting. To date, of all the respiratory viruses including influenza and coronaviruses, only influenza has had a drug (i.e., Tamiflu) specifically targeted to treat and prevent infection. As a result, additional agents that specifically target viral production and are clinically feasible are needed to alleviate respiratory viral infections. The idea of using a miRNA/siRNA molecular approach for treating various diseases was postulated over a decade ago; however, only within the past few years has it become feasible. One technological advancement has been the molecular linkage of lipophilic moieties to mi/siRNAs in order to bypass the need for enveloping these inhibitory RNAs in lipid-based transfection reagents, which could irritate the airway if inhaled. Here we show that siRNAs and miRNAs inhibit SARS CoV-2 spike protein production in a dose-dependent manner in both HEK293 cells and a primary human airway tracheal cell line. We also show that this inhibition is equally robust using a clinically relevant siRNA that does not need to be prepped with a transfection reagent.

SUBMITTER: Ian Gallicano G 

PROVIDER: S-EPMC7659899 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility.

Gallicano G Ian GI   Casey John L JL   Fu Jiayu J   Mahapatra Samiksha S  

Gene therapy 20201112 5


Covid-19 (SARS CoV-2) has become a deadly, world-wide pandemic. Although most who are infected survive, complications from the virus can be pronounced and long-lasting. To date, of all the respiratory viruses including influenza and coronaviruses, only influenza has had a drug (i.e., Tamiflu) specifically targeted to treat and prevent infection. As a result, additional agents that specifically target viral production and are clinically feasible are needed to alleviate respiratory viral infection  ...[more]

Similar Datasets

| S-EPMC8733332 | biostudies-literature
| S-EPMC10827432 | biostudies-literature
| S-EPMC2878930 | biostudies-literature
| S-EPMC8123524 | biostudies-literature
| S-EPMC7361265 | biostudies-literature
| S-EPMC7281371 | biostudies-literature
| S-EPMC7883726 | biostudies-literature
| S-BSST379 | biostudies-other
| S-EPMC9927802 | biostudies-literature
| S-EPMC7383556 | biostudies-literature