Unknown

Dataset Information

0

Doxorubicin Improves Cancer Cell Targeting by Filamentous Phage Gene Delivery Vectors.


ABSTRACT: Merging targeted systemic gene delivery and systemic chemotherapy against cancer, chemovirotherapy, has the potential to improve chemotherapy and gene therapy treatments and overcome cancer resistance. We introduced a bacteriophage (phage) vector, named human adeno-associated virus (AAV)/phage or AAVP, for the systemic targeting of therapeutic genes to cancer. The vector was designed as a hybrid between a recombinant adeno-associated virus genome (rAAV) and a filamentous phage capsid. To achieve tumor targeting, we displayed on the phage capsid the double-cyclic CDCRGDCFC (RGD4C) ligand that binds the alpha-V/beta-3 (?v?3) integrin receptor. Here, we investigated a combination of doxorubicin chemotherapeutic drug and targeted gene delivery by the RGD4C/AAVP vector. Firstly, we showed that doxorubicin boosts transgene expression from the RGD4C/AAVP in two-dimensional (2D) cell cultures and three-dimensional (3D) tumor spheres established from human and murine cancer cells, while preserving selective gene delivery by RGD4C/AAVP. Next, we confirmed that doxorubicin does not increase vector attachment to cancer cells nor vector cell entry. In contrast, doxorubicin may alter the intracellular trafficking of the vector by facilitating nuclear accumulation of the RGD4C/AAVP genome through destabilization of the nuclear membrane. Finally, a combination of doxorubicin and RGD4C/AAVP-targeted suicide gene therapy exerts a synergistic effect to destroy human and murine tumor cells in 2D and 3D tumor sphere settings.

SUBMITTER: Tsafa E 

PROVIDER: S-EPMC7660303 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Doxorubicin Improves Cancer Cell Targeting by Filamentous Phage Gene Delivery Vectors.

Tsafa Effrosyni E   Bentayebi Kaoutar K   Topanurak Supachai S   Yata Teerapong T   Przystal Justyna J   Fongmoon Duriya D   Hajji Nabil N   Waramit Sajee S   Suwan Keittisak K   Hajitou Amin A  

International journal of molecular sciences 20201023 21


Merging targeted systemic gene delivery and systemic chemotherapy against cancer, chemovirotherapy, has the potential to improve chemotherapy and gene therapy treatments and overcome cancer resistance. We introduced a bacteriophage (phage) vector, named human adeno-associated virus (AAV)/phage or AAVP, for the systemic targeting of therapeutic genes to cancer. The vector was designed as a hybrid between a recombinant adeno-associated virus genome (rAAV) and a filamentous phage capsid. To achieve  ...[more]

Similar Datasets

| S-EPMC4319695 | biostudies-literature
| S-EPMC3561762 | biostudies-literature
| S-EPMC7546358 | biostudies-literature
| S-EPMC8609903 | biostudies-literature
| S-EPMC7486479 | biostudies-literature
| S-EPMC7689215 | biostudies-literature
2024-07-21 | GSE244808 | GEO
| S-EPMC3879331 | biostudies-literature
| S-EPMC8069790 | biostudies-literature
| S-EPMC4829627 | biostudies-literature