Unknown

Dataset Information

0

First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites.


ABSTRACT: Hybrid halide perovskite solar cells have recently attracted substantial attention, mainly because of their high power conversion efficiency. Among diverse variants, (CH3NH3)PbI3 and HC(NH2)2PbI3 are particularly promising candidates because their bandgap well matches the energy range of visible light. Here, we demonstrate that the large nonlinear photocurrent in ?-(CH3NH3)PbI3 and ?-HC(NH2)2PbI3 is mostly determined by the intrinsic electronic band properties near the Fermi level, rooted in the inorganic backbone, whereas the ferroelectric polarization of the hybrid halide perovskite is largely dominated by the ionic contribution of the molecular cation. The spatial charge shift upon excitation is attributed to the charge transfer from iodine to lead atoms in the backbone, which is independent of the presence of the cationic molecules. Our findings can serve as a guiding principle for the design of future materials for halide-perovskite solar cells with further enhanced photovoltaic performance.

SUBMITTER: Kim B 

PROVIDER: S-EPMC7665211 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites.

Kim Bumseop B   Kim Jeongwoo J   Park Noejung N  

Scientific reports 20201112 1


Hybrid halide perovskite solar cells have recently attracted substantial attention, mainly because of their high power conversion efficiency. Among diverse variants, (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> and HC(NH<sub>2</sub>)<sub>2</sub>PbI<sub>3</sub> are particularly promising candidates because their bandgap well matches the energy range of visible light. Here, we demonstrate that the large nonlinear photocurrent in β-(CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> and α-HC(NH<sub>2</s  ...[more]

Similar Datasets

| S-EPMC4522682 | biostudies-other
| S-EPMC8522734 | biostudies-literature
| S-EPMC4373752 | biostudies-other
| S-EPMC4731798 | biostudies-other
| S-EPMC8539499 | biostudies-literature
| S-EPMC4894981 | biostudies-literature
| S-EPMC5121628 | biostudies-literature
| S-EPMC8763376 | biostudies-literature
| S-EPMC8223479 | biostudies-literature
| S-EPMC6255755 | biostudies-literature