Unknown

Dataset Information

0

Development and validation of a clinical score to estimate progression to severe or critical state in COVID-19 pneumonia hospitalized patients.


ABSTRACT: The prognosis of a patient with COVID-19 pneumonia is uncertain. Our objective was to establish a predictive model of disease progression to facilitate early decision-making. A retrospective study was performed of patients admitted with COVID-19 pneumonia, classified as severe (admission to the intensive care unit, mechanic invasive ventilation, or death) or non-severe. A predictive model based on clinical, laboratory, and radiological parameters was built. The probability of progression to severe disease was estimated by logistic regression analysis. Calibration and discrimination (receiver operating characteristics curves and AUC) were assessed to determine model performance. During the study period 1152 patients presented with SARS-CoV-2 infection, of whom 229 (19.9%) were admitted for pneumonia. During hospitalization, 51 (22.3%) progressed to severe disease, of whom 26 required ICU care (11.4); 17 (7.4%) underwent invasive mechanical ventilation, and 32 (14%) died of any cause. Five predictors determined within 24 h of admission were identified: Diabetes, Age, Lymphocyte count, SaO2, and pH (DALSH score). The prediction model showed a good clinical performance, including discrimination (AUC 0.87 CI 0.81, 0.92) and calibration (Brier score?=?0.11). In total, 0%, 12%, and 50% of patients with severity risk scores???5%, 6-25%, and?>?25% exhibited disease progression, respectively. A risk score based on five factors predicts disease progression and facilitates early decision-making according to prognosis.

SUBMITTER: Gude F 

PROVIDER: S-EPMC7666132 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development and validation of a clinical score to estimate progression to severe or critical state in COVID-19 pneumonia hospitalized patients.

Gude Francisco F   Riveiro Vanessa V   Rodríguez-Núñez Nuria N   Ricoy Jorge J   Lado-Baleato Óscar Ó   Lourido Tamara T   Rábade Carlos C   Lama Adriana A   Casal Ana A   Abelleira-París Romina R   Ferreiro Lucía L   Suárez-Antelo Juan J   Toubes María E ME   Pou Cristina C   Taboada-Muñiz Manuel M   Calle-Velles Felipe F   Mayán-Conesa Plácido P   Del Molino María L Pérez MLP   Galbán-Rodríguez Cristóbal C   Álvarez-Escudero Julián J   Beceiro-Abad Carmen C   Molinos-Castro Sonia S   Agra-Vázquez Néstor N   Pazo-Núñez María M   Páez-Guillán Emilio E   Varela-García Pablo P   Martínez-Rey Carmen C   Pernas-Pardavila Hadrián H   Domínguez-Santalla María J MJ   Vidal-Vázquez Martín M   Marques-Afonso Ana T AT   González-Quintela Arturo A   González-Juanatey José R JR   Pose Antonio A   Valdés Luis L  

Scientific reports 20201113 1


The prognosis of a patient with COVID-19 pneumonia is uncertain. Our objective was to establish a predictive model of disease progression to facilitate early decision-making. A retrospective study was performed of patients admitted with COVID-19 pneumonia, classified as severe (admission to the intensive care unit, mechanic invasive ventilation, or death) or non-severe. A predictive model based on clinical, laboratory, and radiological parameters was built. The probability of progression to seve  ...[more]

Similar Datasets

| S-EPMC8872836 | biostudies-literature
| S-EPMC7953459 | biostudies-literature
| S-EPMC8610114 | biostudies-literature
| S-EPMC7666405 | biostudies-literature
| S-EPMC7218676 | biostudies-literature
| S-EPMC9134988 | biostudies-literature
2018-12-26 | GSE103119 | GEO
| S-BSST416 | biostudies-other
| S-EPMC7373285 | biostudies-literature
| S-EPMC8353968 | biostudies-literature