Changes in gadoxetic-acid-enhanced MR imaging during the first year after irreversible electroporation of malignant hepatic tumors.
Ontology highlight
ABSTRACT: PURPOSE:To evaluate the appearance and size of ablation zones in gadoxetic-acid-enhanced magnetic resonance imaging (MRI) during the first year after irreversible electroporation (IRE) of primary or secondary hepatic malignancies and to investigate potential correlations to clinical features. MATERIAL AND METHODS:The MRI-appearance of the ablation area was assessed 1-3 days, 6 weeks, 3 months, 6 months, 9 months and 1 year after IRE. The size of the ablation zone and signal intensities of each follow-up control were compared. Moreover, relationships between clinical features and the MRI-appearance of the ablation area 1-3 days after IRE were analyzed. RESULTS:The ablation zone size decreased from 5.6 ± 1.4 cm (1-3 days) to 3.7±1.2 cm (1 year). A significant decrease of central hypointensities was observed in T2-blade- (3 months), T2 haste- (6 weeks; 3 months; 6 months; 1 year), T1 arterial phase- (3 months; 1 year), and diffusion-sequences (6 weeks; 3 months; 6 months; 9 months; 1 year). The unenhanced T1-sequences showed significantly increasing central hypointensities (6 weeks; 3 months; 6 months; 9 months; 1 year). Significantly increasing peripheral hypointensities were detected in T1 arterial phase- (3 months; 6 months; 9 months; 1 year) and in T1 portal venous phase-sequences (6 weeks; 3 months; 6 months; 9 months; 1 year). Peripheral hypointensities of unenhanced T1-sequences decreased significantly 1 year after IRE. 1-3 days after IRE central T1 portal venous hypo- or isointensities were detected significantly more often than hyperintensities, if more than 3 IRE electrodes were used. CONCLUSION:Hepatic IRE results in continuous reduction of ablation zone size during the first postinterventional year. In addition to centrally decreasing T1-signal and almost steadily increasing signal in the enhanced T2 haste-, diffusion- and T1 arterial phase-sequences, there is a trend toward long-term decreasing T1 arterial- and portal venous MRI-signal intensity of the peripheral ablation area, probably representing a region of reversible electroporation.
SUBMITTER: Baumler W
PROVIDER: S-EPMC7671553 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA