Unknown

Dataset Information

0

Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.


ABSTRACT: High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cell-populations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe single-cell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.

SUBMITTER: Chlis NK 

PROVIDER: S-EPMC7672460 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.

Chlis Nikolaos-Kosmas NK   Rausch Lisa L   Brocker Thomas T   Kranich Jan J   Theis Fabian J FJ  

Nucleic acids research 20201101 20


High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting o  ...[more]

Similar Datasets

| S-EPMC10435879 | biostudies-literature
| S-EPMC8457665 | biostudies-literature
| S-EPMC7549788 | biostudies-literature
| S-EPMC2827956 | biostudies-literature
| S-EPMC6134764 | biostudies-literature
| S-EPMC6767556 | biostudies-literature
| S-EPMC9980304 | biostudies-literature
| S-EPMC10667244 | biostudies-literature
| S-EPMC8131758 | biostudies-literature
| S-EPMC3060130 | biostudies-literature