Prediction of pulmonary hypertension in older adults based on vital capacity and systolic pulmonary artery pressure.
Ontology highlight
ABSTRACT: Objective:Right heart catheterization (RHC) is associated with a higher procedural risk in older adults, but non-invasive estimation of pulmonary hypertension (PH) is a challenge. We aimed to elaborate a non-invasive prediction model to estimate PH. Methods and design:We retrospectively analysed 134 older adults (70.0?years ±12.3; 44.9% males) who reported to our clinic with unclear dyspnea between 01/2015 and 01/2020 and had received RHC as a part of their diagnostic workup. Lung function testing, analysis of blood gas samples, 6?min walk distance and echocardiography were performed within 24?hours of RHC. Main outcome measures:In a stepwise statistical approach by using an in/exclusion algorithm (using the AIC criterion) we analysed non-invasive parameters to test their value in predicting PH (defined as mean pulmonary artery pressure, PAmean, >25mmHg). Discrimination capability of the final model was measured by the AUC (area under curve) from an ROC (receiver operating characteristics) analysis. Results:We yielded a sensitivity of 87.2% and a specificity of 62.5% in a combinatorial logistical model with systolic pulmonary artery pressure (sPAP) and forced vital capacity (VCmax), the discrimination index was 86.7%. The odds ratios for an increase of 10?mmHg of sPAP were 2.99 (2.08-4.65) and 1.86 (1.11-3.21) for a 1?l decrease in VCmax. On their own, VCmax proved to be specific (83.3%), while sPAP was a sensitive (79.1%) predictor for PH. Conclusions:We provide a combinatorial model to predict PH from sPAP and VCmax in older adults, which may help to avoid invasive procedures.
SUBMITTER: Wernhart S
PROVIDER: S-EPMC7672752 | biostudies-literature | 2020 Jan-Dec
REPOSITORIES: biostudies-literature
ACCESS DATA