Unknown

Dataset Information

0

Molecular variation in a functionally divergent homolog of FCA regulates flowering time in Arabidopsis thaliana.


ABSTRACT: The identification and functional characterization of natural variants in plants are essential for understanding phenotypic adaptation. Here we identify a molecular variation in At2g47310 that contributes to the natural variation in flowering time in Arabidopsis thaliana accessions. This gene, which we term SISTER of FCA (SSF), functions in an antagonistic manner to its close homolog FCA. Genome-wide association analysis screens two major haplotypes of SSF associated with the natural variation in FLC expression, and a single polymorphism, SSF-N414D, is identified as a main contributor. The SSF414N protein variant interacts more strongly with CUL1, a component of the E3 ubiquitination complex, than the SSF414D form, mediating differences in SSF protein degradation and FLC expression. FCA and SSF appear to have arisen through gene duplication after dicot-monocot divergence, with the SSF-N414D polymorphism emerging relatively recently within A. thaliana. This work provides a good example for deciphering the functional importance of natural polymorphisms in different organisms.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC7673134 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular variation in a functionally divergent homolog of FCA regulates flowering time in Arabidopsis thaliana.

Wang Yunhe Y   Tao Zhen Z   Wang Wanyi W   Filiault Daniele D   Qiu Chunhong C   Wang Chuanhong C   Wang Hui H   Rehman Shamsur S   Shi Jian J   Zhang Yan Y   Li Peijin P  

Nature communications 20201117 1


The identification and functional characterization of natural variants in plants are essential for understanding phenotypic adaptation. Here we identify a molecular variation in At2g47310 that contributes to the natural variation in flowering time in Arabidopsis thaliana accessions. This gene, which we term SISTER of FCA (SSF), functions in an antagonistic manner to its close homolog FCA. Genome-wide association analysis screens two major haplotypes of SSF associated with the natural variation i  ...[more]

Similar Datasets

| S-EPMC162157 | biostudies-literature
| S-EPMC4608753 | biostudies-other
| S-EPMC4979618 | biostudies-other
| S-EPMC3346135 | biostudies-literature
| S-EPMC2710639 | biostudies-literature
| S-EPMC1451178 | biostudies-literature
| S-EPMC5786223 | biostudies-literature
| S-EPMC137082 | biostudies-literature
| S-EPMC3454893 | biostudies-literature
| S-EPMC5695581 | biostudies-literature