Unknown

Dataset Information

0

Multi-Contrast Super-Resolution MRI Through a Progressive Network.


ABSTRACT: Magnetic resonance imaging (MRI) is widely used for screening, diagnosis, image-guided therapy, and scientific research. A significant advantage of MRI over other imaging modalities such as computed tomography (CT) and nuclear imaging is that it clearly shows soft tissues in multi-contrasts. Compared with other medical image super-resolution methods that are in a single contrast, multi-contrast super-resolution studies can synergize multiple contrast images to achieve better super-resolution results. In this paper, we propose a one-level non-progressive neural network for low up-sampling multi-contrast super-resolution and a two-level progressive network for high up-sampling multi-contrast super-resolution. The proposed networks integrate multi-contrast information in a high-level feature space and optimize the imaging performance by minimizing a composite loss function, which includes mean-squared-error, adversarial loss, perceptual loss, and textural loss. Our experimental results demonstrate that 1) the proposed networks can produce MRI super-resolution images with good image quality and outperform other multi-contrast super-resolution methods in terms of structural similarity and peak signal-to-noise ratio; 2) combining multi-contrast information in a high-level feature space leads to a significantly improved result than a combination in the low-level pixel space; and 3) the progressive network produces a better super-resolution image quality than the non-progressive network, even if the original low-resolution images were highly down-sampled.

SUBMITTER: Lyu Q 

PROVIDER: S-EPMC7673259 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8550564 | biostudies-literature
| S-EPMC9930806 | biostudies-literature
| S-EPMC6382767 | biostudies-literature
| S-EPMC6107420 | biostudies-literature
| S-EPMC10895690 | biostudies-literature
| S-EPMC7206553 | biostudies-literature
| S-EPMC8354427 | biostudies-literature
| S-EPMC10172399 | biostudies-literature
| S-EPMC6294732 | biostudies-literature
| S-EPMC6733968 | biostudies-literature