Unknown

Dataset Information

0

Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-?B Pathway.


ABSTRACT: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb Scutellaria baicalensis Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a novel drug delivery system-Baicalin liposome (BA-LP) in previous research-which can improve some physical properties of BA. Therefore, we aimed to explore the effect of BA-LP on ALI mice induced by LPS. In pharmacokinetics study, the values of t 1/2 and AUC0- t in the BA-LP group were significantly higher than that of the BA group in normal mice, indicating that BA-LP could prolong the duration time in vivo of BA. The BA-LP group also showed a higher concentration in lung tissues than the BA group. Pharmacodynamics studies showed that BA-LP had a better effect than the BA group at the same dosage on reducing the W/D ratio, alleviating the lung injury score, and decreasing the proinflammatory factors (TNF-?, IL-1?) and total proteins in bronchoalveolar lavage fluids (BALF). In addition, the therapeutic effects of BA-LP showed a dose-dependent manner. Western blot analysis indicated that the anti-inflammatory action of BA could be attributed to the inhibition of the TLR4-NF?Bp65 and JNK-ERK signaling pathways. These results suggest that BA-LP could be a valuable therapeutic candidate in the treatment of ALI.

SUBMITTER: Long Y 

PROVIDER: S-EPMC7673921 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-<i>κ</i>B Pathway.

Long Yu Y   Xiang Yan Y   Liu Songyu S   Zhang Yulu Y   Wan Jinyan J   Yang Qiyue Q   Cui Mingquan M   Ci Zhimin Z   Li Nan N   Peng Wei W  

Mediators of inflammation 20201111


Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb <i>Scutellaria baicalensis</i> Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a  ...[more]

Similar Datasets

| S-EPMC5563358 | biostudies-literature
| S-EPMC8933090 | biostudies-literature
| S-EPMC10808520 | biostudies-literature
| S-EPMC8905599 | biostudies-literature
| S-EPMC9224410 | biostudies-literature
| S-EPMC9668451 | biostudies-literature
| S-EPMC7188916 | biostudies-literature
| S-EPMC8165801 | biostudies-literature
| S-EPMC7921675 | biostudies-literature
| S-EPMC5359552 | biostudies-literature