Synthesis of lignin-derived nitrogen-doped carbon as a novel catalyst for 4-NP reduction evaluation.
Ontology highlight
ABSTRACT: In this study, nitrogen-doped carbon (NC) was fabricated using lignin as carbon source and g-C3N4 as sacrificial template and nitrogen source. The structural properties of as-prepared NC were characterized by TEM, XRD, FT-IR, Raman, XPS and BET techniques. Attractively, NC has proved efficient for reducing 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4 as hydrogen donor with high apparent rate constant (kapp?=?4.77 min-1) and specific mass activity (s?=?361 mol kgcat-1 h-1), which values are superior to the previously reported catalysts in the literature. Density functional theory (DFT) calculations demonstrate that four kinds of N dopants can change the electronic structure of the adjacent carbon atoms and contribute to their catalytic properties dependant on N species, however, graphitic N species has much greater contribution to 4-NP adsorption and catalytic reduction. Furthermore, The preliminary mechanism of this transfer hydrogenation reaction over as-prepared NC is proposed on the basis of XPS and DFT data. Astoundingly, NC has excellent stability and reusability of six consecutive runs without loss of catalytic activity. These findings open up a vista to engineer lignin-derived NC as metal-free catalyst for hydrogenation reaction.
SUBMITTER: Liu Y
PROVIDER: S-EPMC7675980 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA