Unknown

Dataset Information

0

Bacterial Microbiota-derived Extracellular Vesicles in Children With Allergic Airway Diseases: Compositional and Functional Features.


ABSTRACT:

Purpose

Bacterial extracellular vesicles (EVs) play crucial roles in bacteria-host interactions. Due to their cargo, EVs are considered fingerprints of the parent cell, which are detectable in body fluids. We studied the composition and function of bacterial microbiota-derived EVs genes in urine to evaluate whether they have specific characteristics concerning allergic airway disease.

Methods

Subjects were from elementary school surveys and classified into 3 groups according to questionnaires and sensitization to aeroallergens: the allergic airway group (AA, n = 16), atopic controls (AC, n = 7) and healthy controls (HC, n = 26). The bacterial EVs were isolated from voided urine samples, their nucleic acid was extracted for 16S ribosomal RNA pyrosequencing and then characterized using ?-diversity, ?-diversity, network analysis, intergroup comparison of bacterial composition and predicted functions, and correlation with total immunoglobulin E (IgE), eosinophils% and fractional exhaled NO.

Results

The compositional ?-diversity was the highest in AA, while functional ?-diversity was the highest in HC. AA had a distinct clustering with the least intersample variation. Klebsiella, Haemophilus, members from Lachnospiraceae and Ruminococcaceae, and the pathways of sphingolipid and glycerolipid metabolism, and biosynthesis of peptidoglycan and lysine were the highest in AA and positively correlated with total IgE or eosinophil%. Genetic information processing function contributed to 48% of the intergroup variance and was the highest in AA. Diaphorobacter, Acinetobacter, and the pathways of short-chain fatty acids and anti-oxidants metabolism, lysine and xenobiotic degradation, and lipopolysaccharide biosynthesis were the lowest in AA and negatively correlated with total IgE or eosinophil%. The bacterial composition and function in AC were closer to those in HC. The bacterial network was remarkably dense in HC.

Conclusions

The bacterial microbiota-derived EVs in urine possess characteristic features in allergic airway disease with a remarkable correlation with total IgE and eosinophil%. These findings suggest that they may play important roles in allergic airway diseases.

SUBMITTER: Samra MS 

PROVIDER: S-EPMC7680829 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bacterial Microbiota-derived Extracellular Vesicles in Children With Allergic Airway Diseases: Compositional and Functional Features.

Samra Mona Salem MS   Lim Dae Hyun DH   Han Man Yong MY   Jee Hye Mi HM   Kim Yoon Keun YK   Kim Jeong Hee JH  

Allergy, asthma & immunology research 20210101 1


<h4>Purpose</h4>Bacterial extracellular vesicles (EVs) play crucial roles in bacteria-host interactions. Due to their cargo, EVs are considered fingerprints of the parent cell, which are detectable in body fluids. We studied the composition and function of bacterial microbiota-derived EVs genes in urine to evaluate whether they have specific characteristics concerning allergic airway disease.<h4>Methods</h4>Subjects were from elementary school surveys and classified into 3 groups according to qu  ...[more]

Similar Datasets

| S-EPMC7789736 | biostudies-literature
| S-EPMC7264182 | biostudies-literature
| S-EPMC6365014 | biostudies-literature
| S-EPMC10642029 | biostudies-literature
| S-EPMC7117871 | biostudies-literature
| S-EPMC8487953 | biostudies-literature
2018-10-30 | GSE121818 | GEO
| S-EPMC4622402 | biostudies-literature
| S-EPMC6205372 | biostudies-literature
| S-EPMC8477046 | biostudies-literature