Ontology highlight
ABSTRACT:
Methods: This study is based on a phase II clinical trial designed as a window-of-opportunity trial including 50 breast cancer patients treated with 80?mg of atorvastatin/day for 2?weeks, between the time of diagnosis and breast surgery. Lipids were extracted from frozen tumor tissue sampled pre- and post-atorvastatin treatment. Intratumoral cholesterol levels were measured using a fluorometric quantitation assay. LDLR expression was evaluated by immunohistochemistry on formalin-fixed paraffin-embedded tumor tissue. Paired blood samples pre- and post-atorvastatin were analyzed for circulating low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1, and apolipoprotein B. In vitro experiments on MCF-7 breast cancer cells treated with atorvastatin were performed for comparison on the cellular level.
Results: In the trial, 42 patients completed all study parts. From the paired tumor tissue samples, assessment of the cholesterol levels was achievable for 14 tumors, and for the LDLR expression in 24 tumors. Following atorvastatin treatment, the expression of LDLR was significantly increased (P = 0.004), while the intratumoral levels of total cholesterol remained stable. A positive association between intratumoral cholesterol levels and tumor proliferation measured by Ki-67 expression was found. In agreement with the clinical findings, results from in vitro experiments showed no significant changes of the intracellular cholesterol levels after atorvastatin treatment while increased expression of the LDLR was found, although not reaching statistical significance.
Conclusions: This study shows an upregulation of LDLR and preserved intratumoral cholesterol levels in breast cancer patients treated with statins. Together with previous findings on the anti-proliferative effect of statins in breast cancer, the present data suggest a potential role for LDLR in the statin-induced regulation of breast cancer cell proliferation.
Trial registration: The study has been registered at ClinicalTrials.gov (i.e., ID number: NCT00816244 , NIH), December 30, 2008.
SUBMITTER: Feldt M
PROVIDER: S-EPMC7682108 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
Cancer & metabolism 20201123 1
<h4>Background</h4>Deregulated lipid metabolism is common in cancer cells and the mevalonate pathway, which synthesizes cholesterol, is central in lipid metabolism. This study aimed to assess statin-induced changes of the intratumoral levels of cholesterol and the expression of the low-density lipoprotein receptor (LDLR) to enhance our understanding of the role of the mevalonate pathway in cancer cholesterol metabolism.<h4>Methods</h4>This study is based on a phase II clinical trial designed as ...[more]