Unknown

Dataset Information

0

An engineered receptor-binding domain improves the immunogenicity of multivalent SARS-CoV-2 vaccines.


ABSTRACT: The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

SUBMITTER: Quinlan BD 

PROVIDER: S-EPMC7685318 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8262850 | biostudies-literature
2021-09-09 | GSE172054 | GEO
| S-EPMC8463846 | biostudies-literature
| S-EPMC7941618 | biostudies-literature
| S-EPMC9270177 | biostudies-literature
| PRJNA721898 | ENA
| S-EPMC10355161 | biostudies-literature
2021-12-15 | GSE183408 | GEO
| S-EPMC4439384 | biostudies-literature
| S-EPMC2750803 | biostudies-literature