Project description:PF-06647263, a novel antibody-drug conjugate consisting of an anti-EFNA4 antibody linked to a calicheamicin payload, has shown potent antitumor activity in human xenograft tumor models, including triple-negative breast cancer (TNBC). In the dose-escalation part 1 of this multicenter, open-label, phase I study (NCT02078752), successive cohorts of patients (n, 48) with advanced solid tumors and no available standard therapy received PF-06647263 every 3 weeks (Q3W) or every week (QW), following a modified toxicity probability interval (mTPI) method (initial dosing: 0.015 mg/kg Q3W). Primary objective in part 1 was to estimate the maximum tolerated dose (MTD) and select the recommended phase 2 dose (RP2D). In part 2 (dose-expansion cohort), 12 patients with pretreated, metastatic TNBC received PF-06647263 at the RP2D to further evaluate tumor response and overall safety. PF-06647263 QW administration (n, 23) was better tolerated than the Q3W regimen (n, 25) with only 1 DLT reported (thrombocytopenia). The most common AEs with the QW regimen (fatigue, nausea, vomiting, mucosal inflammation, thrombocytopenia, and diarrhea) were mostly mild to moderate in severity. The MTD was not estimated. PF-06647263 exposures increased in a dose-related manner across the doses evaluated. The RP2D was determined to be 0.015 mg/kg QW. Six (10%) patients achieved a confirmed partial response and 22 (36.7%) patients had stable disease. No correlations were observed between tumor responses and EFNA4 expression levels. Study findings showed manageable safety and favorable PK for PF-06647263 administered QW at the RP2D, with preliminary evidence of limited antitumor activity in patients with TNBC and ovarian cancer.
Project description:Early in mitochondria-mediated apoptosis, the mitochondrial outer membrane becomes permeable to proteins that, when released into the cytosol, initiate the execution phase of apoptosis. Proteins in the Bcl-2 family regulate this permeabilization, but the molecular composition of the mitochondrial outer membrane pore is under debate. We reported previously that at physiologically relevant levels, ceramides form stable channels in mitochondrial outer membranes capable of passing the largest proteins known to exit mitochondria during apoptosis (Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Mitochondrion 6, 118-125). Here we show that Bcl-2 proteins are not required for ceramide to form protein-permeable channels in mitochondrial outer membranes. However, both recombinant human Bcl-x(L) and CED-9, the Caenorhabditis elegans Bcl-2 homologue, disassemble ceramide channels in the mitochondrial outer membranes of isolated mitochondria from rat liver and yeast. Importantly, Bcl-x L and CED-9 disassemble ceramide channels in the defined system of solvent-free planar phospholipid membranes. Thus, ceramide channel disassembly likely results from direct interaction with these anti-apoptotic proteins. Mutants of Bcl-x L act on ceramide channels as expected from their ability to be anti-apoptotic. Thus, ceramide channels may be one mechanism for releasing pro-apoptotic proteins from mitochondria during the induction phase of apoptosis.
Project description:Relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) remains a therapeutic challenge. Loncastuximab tesirine is an antibody-drug conjugate against CD19, an antigen expressed in many B-cell malignancies. This open-label, single-arm, dose-escalation, dose-expansion study assessed the safety, tolerability, pharmacokinetics (PKs), immunogenicity, and preliminary clinical activity of loncastuximab tesirine in adults with R/R B-ALL. A total of 35 patients were enrolled, with a median age of 55 years (range, 20-80) and a median of 3 prior therapies (range, 1-15). All patients received at least 1 IV infusion of loncastuximab tesirine at 15 to 150 μg/kg once every 3 weeks (Q3W; n = 30) or 50 μg/kg IV weekly (n = 5). Common treatment-emergent adverse events (TEAEs) were nausea (42.9%), febrile neutropenia (37.1%), and reversible liver test abnormalities. Grade ≥3 TEAEs were reported in 85.7% patients, most commonly febrile neutropenia and other hematologic abnormalities and reversible liver test abnormalities. There were no treatment-related deaths. Four patients (11.4%) had grade 2 infusion-related reactions, and 1 patient (150 μg/kg Q3W) had a dose-limiting toxicity of hyperbilirubinemia that resolved within 6 days without further action. The maximum tolerated dose was not reached. Three patients achieved complete responses, 1 each at 30, 120, and 150 μg/kg Q3W. PK studies showed marked interpatient variability, with target-mediated drug disposition seeming to contribute to time- and dose-dependent disposition. No clinically relevant anti-drug-antibody formation occurred. The trial was terminated in the dose-escalation phase because of slow accrual. This trial was registered at www.clinicaltrials.gov as NCT02669264.
Project description:Neuroendocrine (NE) tumors include a diverse spectrum of hormone-secreting neoplasms that arise from the endocrine and nervous systems. Current chemo- and radio-therapies have marginal curative benefits. The goal of this study was to develop an innovative antibody-drug conjugate (ADC) to effectively treat NE tumors (NETs). First, we confirmed that somatostatin receptor 2 (SSTR2) is an ideal cancer cell surface target by analyzing 38 patient-derived NET tissues, 33 normal organs, and three NET cell lines. Then, we developed a new monoclonal antibody (mAb, IgG1, and kappa) to target two extracellular domains of SSTR2, which showed strong and specific surface binding to NETs. The ADC was constructed by conjugating the anti-SSTR2 mAb and antimitotic monomethyl auristatin E. In vitro evaluations indicated that the ADC can effectively bind, internalize, release payload, and kill NET cells. Finally, the ADC was evaluated in vivo using a NET xenograft mouse model to assess cancer-specific targeting, tolerated dosage, pharmacokinetics, and antitumor efficacy. The anti-SSTR2 ADC exclusively targeted and killed NET cells with minimal toxicity and high stability in vivo. This study demonstrates that the anti-SSTR2 ADC has a high-therapeutic potential for NET therapy.
Project description:BCL-2 family proteins are central regulators of mitochondrial apoptosis and validated anti-cancer targets. Using small cell lung cancer (SCLC) as a model, we demonstrated the presence of differential addiction of cancer cells to anti-apoptotic BCL-2, BCL-XL or MCL-1, which correlated with the respective protein expression ratio. ABT-263 (navitoclax), a BCL-2/BCL-XL inhibitor, prevented BCL-XL from sequestering activator BH3-only molecules (BH3s) and BAX but not BAK. Consequently, ABT-263 failed to kill BCL-XL-addicted cells with low activator BH3s and BCL-XL overabundance conferred resistance to ABT-263. High-throughput screening identified anthracyclines including doxorubicin and CDK9 inhibitors including dinaciclib that synergized with ABT-263 through downregulation of MCL-1. As doxorubicin and dinaciclib also reduced BCL-XL, the combinations of BCL-2 inhibitor ABT-199 (venetoclax) with doxorubicin or dinaciclib provided effective therapeutic strategies for SCLC. Altogether, our study highlights the need for mechanism-guided targeting of anti-apoptotic BCL-2 proteins to effectively activate the mitochondrial cell death programme to kill cancer cells.
Project description:It is well known that tumor necrosis factor-related apoptosis inducing ligand receptor 1 or 2 (DR4/DR5) is specifically expressed in various tumor cells, but less or no expression in most normal cells. Many first generations of TRAIL agonists including recombinant preparations of TRAIL, agonistic antibodies against DR4/DR5 have been developed in phase I/II clinical trials for cancer therapy. However, the outcomes of clinical trials by using DR4/DR5 agonist mono-therapy were disappointed even though the safety profile was well tolerance. In the present study, we report an anti-DR5 antibody-drug conjugate (ADC, named as Zapadcine-1) possesses a higher potential for the therapy of lymphocyte leukemia and solid cancers. Methods: Zapadcine-1 was made by a fully humanized DR5-specific monoclonal antibody (Zaptuzumab) coupled via a cleavable linker to a highly toxic inhibitor of tubulin, monomethyl auristatin D (MMAD), by using ThioBridge technology. Cytotoxicity of the ADC in various tumor cells was identified by luminescent cell viability assay and the efficacy in vivo was determined in cells derived xenografts (CDX) of Jurkat E6-1, BALL-1, Reh, and patient derived xenografts (PDX) of human acute leukemia. Preliminary safety evaluation was carried out in rat and monkey. Results: Zapadcine-1 possesses a similar binding ability to the death receptor DR5 as the naked monoclonal antibody Zaptuzumab, and can be rapidly endocytosed into the lysosome of cancer cells. Zapadcine-1 specifically kills human lymphocyte leukemia cells and solid tumor cells, but not normal cells tested. More importantly, Zapadcine-1 drastically eliminates the xenografts in both CDX and PDX models of human acute leukemia. The excellent and comparable therapeutic efficacy is also observed in lung cancer NCI-H1975 CDX mouse model. The maximum-tolerated dose (MTD) of single injected Zapadcine-1 in rat and cynomolgus monkey shows an acceptable safety profile. Conclusion: These data demonstrate a promising anti-cancer activity, meriting further exploration of its potential as a novel cancer therapeutic agent, especially for the acute lymphocyte leukemia.
Project description:In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.
Project description:Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.
Project description:IntroductionThe anti-apoptotic BCL-2 family proteins, such as BCL-2, BCL-XL, and MCL-1, are excellent cancer therapeutic targets. The FDA approval of BCL-2 selective inhibitor venetoclax in 2016 validated the strategy of targeting these proteins with BH3 mimetic small molecule inhibitors.Areas coveredThis review provides an overview of the patent literature between 2016 and 2021 covering inhibitors and PROTACs of the anti-apoptotic BCL-2 proteins.Expert opinionSince the FDA approval of venetoclax, tremendous efforts have been made to develop its analogues with improved drug properties. These activities will likely result in new drugs in coming years. Significant progress on MCL-1 inhibitors has also been made, with multiple compounds entering clinical trials. However, MCL-1 inhibition could cause on-target toxicity to normal tissues especially the heart. Similar issue exists with BCL-XL inhibitors, which cause on-target platelet toxicity. To overcome this issue, several strategies have been applied, including prodrug, dendrimer-based drug delivery, antibody-drug conjugate (ADC), and proteolysis targeting chimera (PROTAC); and amazingly, each of these approaches has resulted in a drug candidate entering clinical trials. We envision technologies like ADC and PROTAC could also be utilized to increase the therapeutic index of MCL-1 inhibitors.
Project description:PURPOSE:Relapsed or refractory pediatric acute lymphoblastic leukemia (ALL) remains a major cause of death from cancer in children. In this study, we evaluated the efficacy of SAR3419, an antibody-drug conjugate of the maytansinoid DM4 and a humanized anti-CD19 antibody, against B-cell precursor (BCP)-ALL and infant mixed lineage leukemia (MLL) xenografts. EXPERIMENTAL DESIGN:ALL xenografts were established as systemic disease in immunodeficient (NOD/SCID) mice from direct patient explants. SAR3419 was administered as a single agent and in combination with an induction-type regimen of vincristine/dexamethasone/l-asparaginase (VXL). Leukemia progression and response to treatment were assessed in real-time, and responses were evaluated using strict criteria modeled after the clinical setting. RESULTS:SAR3419 significantly delayed the progression of 4 of 4 CD19(+) BCP-ALL and 3 of 3 MLL-ALL xenografts, induced objective responses in all but one xenograft but was ineffective against T-lineage ALL xenografts. Relative surface CD19 expression across the xenograft panel significantly correlated with leukemia progression delay and objective response measure scores. SAR3419 also exerted significant efficacy against chemoresistant BCP-ALL xenografts over a large (10-fold) dose range and significantly enhanced VXL-induced leukemia progression delay in two highly chemoresistant xenografts by up to 82 days. When administered as protracted therapy following remission induction with VXL, SAR3419 prevented disease recurrence into hematolymphoid and other major organs with the notable exception of central nervous system involvement. CONCLUSION:These results suggest that incorporation of SAR3419 into remission induction protocols may improve the outcome for high-risk pediatric and adult CD19(+) ALL.