Ontology highlight
ABSTRACT: Objective
Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm. Approach and Results: Using RNA fluorescent in situ hybridization, we identified macrophages being the major source of TSP1 in human and mouse aneurysmal tissues, accounting for over 70% of cells that actively expressed Thbs1 mRNA. Lack of TSP1 in macrophages decreased solution-based gelatinase activities by elevating TIMP1 (tissue inhibitor of metalloproteinases-1) without affecting the major MMPs (matrix metalloproteinases). Knocking down Timp1 restored the ability of Thbs1-/- macrophages to invade matrix. Finally, we generated Thbs1 flox/flox mice and crossed them with Lyz2-cre mice. In the CaCl2-induced model of abdominal aortic aneurysm, lacking TSP1 in myeloid cells was sufficient to protect mice from aneurysm by reducing macrophage accumulation and preserving aortic integrity.Conclusions
TSP1 contributes to aneurysm pathogenesis, at least in part, by suppressing TIMP1 expression, which subsequently enables inflammatory macrophages to infiltrate vascular tissues.
SUBMITTER: Yang H
PROVIDER: S-EPMC7686278 | biostudies-literature |
REPOSITORIES: biostudies-literature