Unknown

Dataset Information

0

Macrophage GIT1 Contributes to Bone Regeneration by Regulating Inflammatory Responses in an ERK/NRF2-Dependent Way.


ABSTRACT: Despite the best treatment, approximately 10% of fractures still face undesirable repair. Recently, many studies have focused on the importance of macrophages in bone repair; however, the cellular mechanisms by which they work are not yet fully understood. In this study, we explored the functions of macrophage G-protein-coupled receptor interacting protein 1 (GIT1) in healing a tibial monocortical defect model. Using GIT1flox/flox Lyz2-Cre (GIT1 CKO) mice, we observed that a GIT1 deficiency in the macrophages led to an exacerbation of interleukin 1? (IL1?) production, more M1-like macrophage infiltration, and impaired intramembranous ossification in vivo. The results of in vitro assays further indicated that the macrophage GIT1 plays a critical role in several cellular processes in response to lipopolysaccharide (LPS), such as anti-oxidation, IL1? production alleviation, and glycolysis control. Although GIT1 has been recognized as a scaffold protein, our data clarified that GIT1-mediated extracellular-signal-regulated kinase (ERK) phosphorylation could activate nuclear factor (erythroid-derived 2)-like 2 (NRF2) in macrophages after LPS treatment. Moreover, we demonstrated that macrophage GIT1-activated ERK/NRF2 negatively regulates the 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), facilitating the decrease of glycolysis. Our findings uncovered a previously unrecognized role of GIT1 in regulating ERK/NRF2 in macrophages to control the inflammatory response, suggesting that macrophage GIT1 could be a potential target to improve bone regeneration. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..

SUBMITTER: Zhao SJ 

PROVIDER: S-EPMC7689802 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Macrophage GIT1 Contributes to Bone Regeneration by Regulating Inflammatory Responses in an ERK/NRF2-Dependent Way.

Zhao Shu-Jie SJ   Liu Hao H   Chen Jian J   Qian Ding-Fei DF   Kong Fan-Qi FQ   Jie Jian J   Yin Guo-Yong GY   Li Qing-Qing QQ   Fan Jin J  

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20200709 10


Despite the best treatment, approximately 10% of fractures still face undesirable repair. Recently, many studies have focused on the importance of macrophages in bone repair; however, the cellular mechanisms by which they work are not yet fully understood. In this study, we explored the functions of macrophage G-protein-coupled receptor interacting protein 1 (GIT1) in healing a tibial monocortical defect model. Using GIT1<sup>flox/flox</sup> Lyz2-Cre (GIT1 CKO) mice, we observed that a GIT1 defi  ...[more]

Similar Datasets

2020-02-05 | GSE144739 | GEO
| PRJNA604763 | ENA
| S-EPMC4531482 | biostudies-literature
| S-EPMC10029245 | biostudies-literature
| S-EPMC8107826 | biostudies-literature
| S-EPMC4879264 | biostudies-literature
| S-EPMC4293136 | biostudies-literature
2016-05-12 | E-GEOD-71263 | biostudies-arrayexpress
| S-EPMC3641349 | biostudies-literature
| S-EPMC7719599 | biostudies-literature