In vitro model of distinct catabolic and inflammatory response patterns of endothelial cells to intervertebral disc cell degeneration.
Ontology highlight
ABSTRACT: To evaluate dominant cell-to-cell paracrine interactions, including those of human annulus fibrosus (AF), nucleus pulposus (NP), and endothelial cells (ECs), in the production of inflammatory mediators and catabolic enzymes, ECs was cultured in soluble factors derived from AF or NP cells (AFCM or NPCM, respectively) and vice versa. We analysed IL-6 and -8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and -3, nerve growth factor (NGF)-?, and brain-derived neurotrophic factors (BDNFs) with qRT-PCR and ELISA. We implement a microfluidic platform to analyse migration properties of AF and NP cells and ECs in 3D cultures. Our results show that IL-1?-stimulated AF cells produced significantly higher levels of IL-6 and -8, VEGF, and MMP-1 than IL-1?-stimulated NP cells. However, production of IL-6 and -8, VEGF, and MMP-3 was significantly higher in NP cells than in AF cells, under the presence of ECs conditioned medium. We observed considerable migration of NP cells co-cultured with ECs through the microfluidic platform. These results suggest that AF cells may play a major role in the initial degeneration of intervertebral disc. Furthermore, it was found that interactions between NP cells and ECs may play a significant role in the development or progression of diseases.
SUBMITTER: Hwang MH
PROVIDER: S-EPMC7691345 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA