Unknown

Dataset Information

0

Novel ACADVL variants resulting in mitochondrial defects in long-chain acyl-CoA dehydrogenase deficiency.


ABSTRACT: The pathogenesis of very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is highly heterogeneous and still unclear. Additional novel variants have been recently detected in the population. The molecular and cellular effects of these previously unreported variants are still poorly understood and require further characterization. To address this problem, we have evaluated the various functions and biochemical consequences of six novel missense variants that lead to mild VLCAD deficiency. Marked deficiencies in fatty acid oxidation (FAO) and other mitochondrial defects were observed in cells carrying one of these six variants (c.541C>T, c.863T>G, c.895A>G, c.1238T>C, c.1276G>A, and c.1505T>A), including reductions in mitochondrial respiratory-chain function and adenosine triphosphate (ATP) production, and increased levels of mitochondrial reactive oxygen species (ROS). Intriguingly, higher apoptosis levels were found in cells carrying the mutant VLCAD under glucose-limited stress. Moreover, the stability of the mutant homodimer was disturbed, and major conformational changes in each mutant VLCAD structure were predicted by molecular dynamics (MD) simulation. The data presented here may provide valuable information for improving management of diagnosis and treatment of VLCAD deficiency and for a better understanding of the general molecular bases of disease variability.

SUBMITTER: Chen T 

PROVIDER: S-EPMC7691688 | biostudies-literature | 2020 Nov.

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel ACADVL variants resulting in mitochondrial defects in long-chain acyl-CoA dehydrogenase deficiency.

Chen Ting T   Tong Fan F   Wu Xiao-Yu XY   Zhu Ling L   Yi Qiu-Zi QZ   Zheng Jing J   Yang Ru-Lai RL   Zhao Zheng-Yan ZY   Cang Xiao-Hui XH   Shu Qiang Q   Jiang Ping-Ping PP  

Journal of Zhejiang University. Science. B 20201101 11


The pathogenesis of very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is highly heterogeneous and still unclear. Additional novel variants have been recently detected in the population. The molecular and cellular effects of these previously unreported variants are still poorly understood and require further characterization. To address this problem, we have evaluated the various functions and biochemical consequences of six novel missense variants that lead to mild VLCAD deficiency. Mark  ...[more]

Similar Datasets

| S-EPMC2946545 | biostudies-literature
| S-EPMC8006598 | biostudies-literature
| S-EPMC9836253 | biostudies-literature
| S-EPMC4400356 | biostudies-literature
| S-EPMC1189074 | biostudies-literature
| S-EPMC7390178 | biostudies-literature
| S-EPMC4823675 | biostudies-literature
| S-EPMC4470102 | biostudies-literature
| S-EPMC4790081 | biostudies-literature