Unknown

Dataset Information

0

Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability.


ABSTRACT: Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance predicted thanks to adequately structured and trained artificial neural networks (ANN). The authors explain the creation of a comprehensive library of microtextured surfaces with well-known wettability properties. Such a library is processed and employed for the generation and training of artificial neural networks, which can predict the actual wetting performance of new design biointerfaces. The present research demonstrates that AI can importantly support the engineering of innovative hierarchical or multiscale surfaces when complex-to-model properties and phenomena, such as wettability and wetting, are involved.

SUBMITTER: Diaz Lantada A 

PROVIDER: S-EPMC7698866 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability.

Díaz Lantada Andrés A   Franco-Martínez Francisco F   Hengsbach Stefan S   Rupp Florian F   Thelen Richard R   Bade Klaus K  

Nanomaterials (Basel, Switzerland) 20201118 11


Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance pre  ...[more]

Similar Datasets

| S-EPMC10047293 | biostudies-literature
| S-EPMC9844497 | biostudies-literature
2012-12-10 | GSE42804 | GEO
| S-EPMC6465941 | biostudies-literature
| S-EPMC8886673 | biostudies-literature
| S-EPMC10448498 | biostudies-literature
2012-12-10 | E-GEOD-42804 | biostudies-arrayexpress
| S-EPMC8500024 | biostudies-literature
| S-EPMC8674229 | biostudies-literature
| S-EPMC11362182 | biostudies-literature