MicroRNA-148a-3p suppresses epithelial-to-mesenchymal transition and stemness properties via Wnt1-mediated Wnt/?-catenin pathway in pancreatic cancer.
Ontology highlight
ABSTRACT: Although miR-148a-3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR-148a-3p in regulating epithelial-to-mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR-148a-3p expression was remarkably down-regulated in PC tissues and cell lines. Moreover, low expression of miR-148a-3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain-of-function and loss-of-function experiments showed that miR-148a-3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual-luciferase reporter assay demonstrated that Wnt1 was a direct target of miR-148a-3p, and its expression was inversely associated with miR-148a-3p in PC tissues. Furthermore, miR-148a-3p suppressed the Wnt/?-catenin pathway via down-regulation of Wnt1. The effects of ectopic miR-148a-3p were rescued by Wnt1 overexpression. These biological functions of miR-148a-3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR-148a-3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1-mediated Wnt/?-catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.
SUBMITTER: Fu X
PROVIDER: S-EPMC7701524 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA