Unknown

Dataset Information

0

Exercise mitigates sleep loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms.


ABSTRACT: Objective: Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep.

Methods: To minimize between-group differences of baseline characteristics, 24 healthy young males were allocated into one of the three experimental groups: a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention.

Results: We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P = 0.002), which was also associated with reduction in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O2.s-1.mg-1, P = 0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P < 0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P = 0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O2.s-1.mg-1, P = 0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P = 0.971).

Conclusions: A five-night period of sleep restriction leads to reduction in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with concurrent reduction in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss.

SUBMITTER: Saner NJ 

PROVIDER: S-EPMC7704425 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms.

Saner Nicholas J NJ   Lee Matthew J-C MJ   Kuang Jujiao J   Pitchford Nathan W NW   Roach Gregory D GD   Garnham Andrew A   Genders Amanda J AJ   Stokes Tanner T   Schroder Elizabeth A EA   Huo Zhiguang Z   Esser Karyn A KA   Phillips Stuart M SM   Bishop David J DJ   Bartlett Jonathan D JD  

Molecular metabolism 20201031


<h4>Objective</h4>Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep.<h4>Methods</h4>To minimize between-group differences of  ...[more]

Similar Datasets

| S-EPMC4598809 | biostudies-literature
| S-EPMC5561416 | biostudies-literature
| S-EPMC7919228 | biostudies-literature
| S-EPMC5575759 | biostudies-literature
| S-EPMC5521858 | biostudies-other
| S-EPMC6628666 | biostudies-literature
| S-EPMC6442472 | biostudies-literature
| S-EPMC8742049 | biostudies-literature
| S-EPMC5473372 | biostudies-literature
| S-EPMC6671851 | biostudies-literature